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Abstract

How serious is indoor air pollution (IAP) as a threat to infants and children? This paper
estimates the impact of cooking fuel choice — a predominant source of IAP — on under-five
mortality in India, where reliance on biomass fuels such as firewood, animal dung, and
agricultural waste is pervasive. Leveraging forest cover and agricultural land ownership for
identification and nationally representative data, we find that solid fuel use for cooking
significantly increases the child mortality rate - mainly driven by neonatal mortality in the first
28 days after birth. The mortality effect is higher for girls than boys and is magnified in
relatively small households where there is limited scope for the division of labor between
childcare and cooking responsibilities. Among polluting fuels, we find that biomass fuels
drive the impact of polluting fuel use on child mortality.
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1 Introduction

Indoor air pollution (IAP) is the leading environmental factor behind mortality in India,
accounting for about 40% of the 1.2 million deaths in 2017 (Global Burden of Disease 2017).
Globally, it leads to around 3.8 million premature deaths per year - a number that far exceeds
mortality attributed to malaria and tuberculosis combined (WHO, 2021). This pollution is caused
by using biomass fuels (firewood, animal dung, and crop waste), coal, and kerosene for cooking
and heating. Despite several initiatives to encourage the adoption and use of cleaner fuels and
improved cookstoves in various countries, 36% of the global population continues to use polluting
cooking fuels (Stoner et al., 2021).

This paper explores an important but under-researched dimension of the cost of polluting
cooking fuel use in developing countries: the mortality of young children. In many developing
countries, women disproportionately and simultaneously shoulder the burden of cooking and
childcare. In India, the setting of our study, 56% of children under age 5 always stay with their
mothers, including during cooking (Rehfuess et al., 2011; Edwards and Langpap, 2012). Young
children are thus particularly vulnerable to the adverse health risks associated with indoor air
pollution (IAP) in households that use polluting cooking fuels.

While the link between improved cookstove adoption and improvements in health outcomes
has been explored in a few studies (Diaz et al., 2007; Smith-Sivertsen et al., 2009; Hanna et al.,
2016; Barron and Torero, 2017), to the best of our knowledge, causal estimates of the direct cost
of using biomass fuels for cooking on child mortality are non-existent. To this end, we leverage a
large-scale household survey in India — the Demographic and Health Survey (DHS) — which
contains individual- and household-level health and demographic information as well as details on
the fuels used for cooking between 1992 and 2016. Our data offers several unique features that
ensure the external validity of our findings and generate new insights on the impact of biomass
fuel use on infant mortality. First, the DHS contains data on 10 different types of fuels used by
Indian households such as kerosene, LPG, and biomass. Thus, compared to studies that utilize a
restrictive sample to analyze the effectiveness of cookstove adoption or the switch from kerosene
to LPG as cooking fuel choices, our study exploits a wider range of cooking fuels. Second, the
DHS reports a complete record of births and deaths, allowing us to extensively analyze the
environmental cost of infant mortality across a wide range of age groups. Specifically, this
enables us to examine heterogeniety in the IAP associated mortality risk by sorting children into
five distinct age groups: neonatal (0-28 days), post-neonatal (28 days-1 year), infant (0-1 year),
child (1-5 years), and under-five (0-5 years). Third, the DHS collects data from both urban and
rural areas, and this unique feature allows us to provide broadly representative empirical estimates
of the causal relationship between cooking fuel choice and the mortality risks via exposure to IAP
faced by children.

Establishing a causal link between IAP and under-five mortality, however, is challenging since



the choice of cooking fuel may well be endogenous to the incidence of mortality within a
household due to omitted variables and simultaneity biases.! In terms of simultaneity bias,
households can be caught in a self-perpetuating cycle wherein they are only able to afford cheaper
and more polluting cooking fuel options, which adversely affects household health and earnings,
perpetuating the use of polluting fuels (Hanna and Oliva, 2015; Graff Zivin and Neidell, 2012,
2018; Chang et al., 2016, 2019). In terms of omitted variables bias, unobserved characteristics
might confound with cooking fuel choice. To deal with these identification threats, we leverage
two instrumental variables for the fuel choice of a household — forest cover and agricultural land
ownership.

The causal relationship between cooking fuel choice and child mortality relies on the choice
and validity of the instruments. Thus, at the onset, it is important to emphasize that most of the
children in the DHS surveys are from rural areas of India, and a large number of households are
small agricultural landholders. Given that household use of biomass fuels — especially crop
residues, animal waste, and firewood — is highly correlated with farming, livestock ownership, and
easier access and/or a low opportunity cost of firewood use, we choose agricultural landownership
and density of forest cover within a district as our instruments. We subsequently undertake a set of
rigorous tests to check for the validity of these two instruments. In addition to the tests of
relevance (instruments are correlated with the endogenous regressor) and independence
(instruments are uncorrelated with any confounders of exposure-outcome relationship), we test
the exclusion restriction (instruments affect the outcome only through the endogenous regressors)
via a zero-first-stage test. Under this test, the reduced-form effect of the instrument on the
outcome is plausibly zero in a subsample for which the effect of the instrument on the treatment
variable is zero (Van Kippersluis and Rietveld, 2018). As we discuss in detail later, we use a
subsample of small households with three or fewer members from urban areas as the
zero-first-stage sample since these households have limited access to forests as a source of
firewood and limited capability of growing crops and using agricultural crop residues for cooking.
We also test the exclusion restriction by analyzing whether our instruments are associated with
other child characteristics and maternal health-seeking activities and find that the instruments are
not relevant to these outcomes. Finally, we examine whether under-five child mortality can be
explained by either household size or the mother’s educational attainment as an additional test of
the exclusion restriction. We find that neither of these two variables instrumented by agricultural
land ownership status and forest cover affects under-five mortality, unlike cooking fuel choice.

We thus estimate the causal effect of IAP, measured by primary cooking fuel use, on
under-five and infant mortality in a large-scale setting, relying on plausibly exogenous variations

I'There is a robust parallel literature on household averting behavior for clean air in response to adverse impacts
of outdoor air pollution on health (Gerking and Stanley, 1986; Mansfield et al., 2006; Graff Zivin and Neidell, 2009;
Moretti and Neidell, 2011; Barreca et al., 2016; Deschenes et al., 2017; Ito and Zhang, 2020). These studies provide
evidence that households react to changes in health outcomes due to outdoor air pollution by adjusting their behavior,
adopting new technologies, and investing in protective goods in response to health shocks.



in IAP introduced by the forest cover and agricultural land ownership status. The results suggest
highly heterogeneous local mortality effects by children’s age and gender and household
characteristics. Specifically, we find that the effect of polluting cooking fuel use on under-five and
infant mortality rates is 0.040 (standard error = 0.020) and 0.041 (standard error = 0.019). This
translates into 27 under-five children and infants per 1,000 live births that would have been saved
economy-wide if all households used clean fuels for cooking.? Moreover, heterogeneous
treatment effects by the child’s age and household size show that the risk of child mortality due to
cooking fuel choice is driven by mortality within the first 28 days of birth, and it is the highest in
households with five or six members. Specifically, the estimated effect on neonatal mortality rate
is 0.030 (standard error = 0.015), implying the loss of 20 neonates for every 1,000 live births that
would have been saved if all households used clean fuels for cooking. We also document that the
adverse effects of polluting fuel use on infant and under-five mortality are concentrated on girls,
with no impact on boys, which is consistent with a related literature that suggests a bias in the
mistreatment of young girls (Anderson and Ray, 2010).> Our estimates are also robust to several
alternative specifications, such as a more granular definition of polluting cooking fuels (the effect
of fuel dirtiness on under-five and infant mortality rate is 0.007, and the impact on neonatal
mortality rate is 0.005), and use of satellite versus Census-based forest cover data from a different
period than the one used for the baseline analysis.

Our paper is related to an emergent literature that explores the link between IAP and health
outcomes in developing countries.*> This literature can be divided into two groups along
methodological lines: one that uses experimental approaches like randomized control trials
(RCTs) to evaluate the health benefits of choosing cleaner fuels for cooking and the other that uses
quasi-experimental methods to causally estimate the fuel choice and health nexus, e.g., via
difference-in-difference (DID) and instrumental variable (IV) designs. Table 1 summarizes the
context, identification strategies, and findings from the literature.

RCTs analyzing the health impacts of improved cooking stoves arrive at orthogonal
conclusions. Diaz et al. (2007) and Smith-Sivertsen et al. (2009) find that improved cooking
stoves reduce headaches, sore eyes, and chronic respiratory symptoms like wheezing for women
during 18 months of their adoption in San Marcos district, Guatemala. However, Hanna et al.

ZMore precisely, our estimates imply that 26.90 under-five children and 27.46 infants would have been saved per
1,000 live births if all households used clean fuels for cooking.

3This finding is also consistent with the fact that infant mortality is higher for girls than boys in the early ages
(https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health).

4There is also rich literature on the relationship between cooking fuel choice and non-health outcomes, such as
women empowerment and time use, in developing countries. For example, Lee et al. (2023) show that shifting from
biomass to clean fuels is associated with women empowerment, which also endogenously determines the cooking fuel
choice in India (Ghosh et al., 2024).

>A complementary literature focuses on outdoor air quality, exploiting for example, intertemporal and spatial
heterogeneity in the incidences of wildfires, meteorological shocks, exogenous shifts in national energy infrastructure,
industrial structure/technology and cross-border pollution for identification (Jayachandran, 2009; Arceo et al., 2016;
Cesur et al., 2017; Beach and Hanlon, 2018; Benshaul-Tolonen, 2019; Jia and Ku, 2019).
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(2016) find that improved cookstoves did not affect various health outcomes, including sore eyes,
headache, wheezing, and other respiratory symptoms among primary cooks (women) and children
in the household in rural Orissa, India. Smoke exposure fell in the early years of installation, but
the smoke-reducing impact of improved stoves disappeared after two years due to improper
maintenance. Other studies that focus on the effectiveness of specific policies and programs (e.g.,
improved cooking stoves, house construction, and voucher allocation for electrification) conclude
that switching to cleaner cooking fuels is associated with better health outcomes. For example,
Barron and Torero (2017) suggest that electrification program in northern El Salvador reduces the
acute respiratory infections among children under six.

Studies using a quasi-experimental DID strategy include Imelda (2018, 2020) who estimates a
significant reduction in the infant mortality rate resulting from an Indonesian government
program of subsidizing households to switch from kerosene to LPG for cooking. Silwal and
McKay (2015) show that firewood use for cooking harms an individual’s lung capacity by 9.4
percent in Indonesia using proximity to the nearest market as an instrument. Edwards and
Langpap (2012) find that firewood use in Guatemala, instrumented via household’s ownership of
gas stoves, increases the probability of under-five children attached to mothers who cook
experiencing a respiratory infection. Pitt et al. (2006) find that four hours spent cooking per day
increases the likelihood of adults’ respiratory symptoms by 10.8 percentage points and proximity
to stoves adversely affects the respiratory health of women and young children in both rural
Bangladesh and rural India using gender-specific hierarchies as an instrument. Finally, Liu et al.
(2020) suggest that non-solid fuel use benefits an elder’s ability to cope with daily activities
(eating, bathing, housekeeping, financial and medical management) in rural China using the share
of clean fuel users in the village as an instrument.

This paper advances prior work in two ways. We provide population-based evidence on the
effect of cooking fuel choice on infant mortality, a topic that has not been addressed by prior
population-based studies that use the IV approach. Furthermore, we leverage a new identification
strategy based on variation in household cooking fuel choice in response to environmental and
household factors, including forest cover and agricultural land ownership. We thus depart from
prior works that have focused on the effects of specific programs or experiments and broaden the
outcomes covered beyond respiratory diseases.

The rest of the paper is structured as follows. Section 2 describes the data and empirical
approach. Section 3 details our identification strategy, and Section 4 presents estimation results.
Section 5 checks the robustness of our results, while Section 6 concludes.



2 Data and empirical strategy

Our empirical analysis utilizes three datasets. The first, with nearly 0.4 million observations, is the
nationally representative Demographic and Health Surveys (DHS) in India. The DHS collects
individual-level data on mortality incidence and other socio-economic characteristics for every
member residing within the sample household. It also contains household-level information on
wealth, type of housing, location of the residence, and agricultural land ownership status.
Importantly, for our analysis, DHS includes information on the specific type of cooking fuel that a
household uses, allowing us to approximate variations in indoor air quality at the household level.
To date, four rounds of the survey have been conducted since 1992-93.° We rely on three rounds
of this survey: DHS-1 (1992-93), DHS-2 (1998-99), and DHS-4 (2015-16)" which includes a
total of 268,819 ever-married women of reproductive ages between 15-49 years (69,107 from
urban and 199,712 from rural areas)® and a pooled dataset of 369,416 singleton live-born
children, of whom 19,474 died in the 5-years preceding the respective survey year.

To address the endogeneity between child mortality and a household’s choice of cooking fuel
we use two instrumental variables that proxy the latter: land ownership and forest cover at the
district level, both of which eases a household’s access to crop waste and wood for cooking fuel
purposes. While the data on land ownership is available from the DHS surveys, we use satellite
data on forests from the Planning Commission of India which serves as the second data source in
our analysis and the primary database on land use in the country. Lastly, and as a robustness
check, we also obtain surface area of land covered by forests at the village and city block level
from the 2011 Census of India.

To investigate the causal effect of cooking fuel choice on the mortality rates of children, we
specify the following reduced form relationship:

Child Mortality;, ;,, = o + BPolluting Fuel, ;,, + Householdy,s,y + Mother ip g A+ 0
+ Child;p,q5:0 + District 4,7 + Mgt + Eindst,

where Child Mortality,, ., is one of the five age-specific binary variables measuring mortality: (i)
under-five (younger than five years old), (ii) child (toddlers and children between the ages of one
and five), (iii) infant (younger than one-year-old), (iv) post-neonatal (infants between 28 days and
one year old), and (v) neonatal (first 28 days of life). Child Mortality;, ., is assigned a value of 1

SWhile the first three DHS survey datasets cover all states in India, which includes more than 99% of India’s
population, the most recent DHS data for the years 2015-16 (DHS-4) includes all union territories for the first time
which we treat as additional states. The DHS-4 also provides estimates of several demographic and health indicators
at the district level for all 640 districts in the country (as per the 2011 Census).

"We exclude DHS-3 (2005-06) in our empirical analysis due to the absence of district identifiers in the questionnaire
in this round for HIV testing confidentiality.

8Ever-married women, aged less than 15, are excluded from the sample, and all the women interviewed in the survey
were ever-married, of whom only 271 were aged less than 15 years.
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if the mortality happened over the given age periods, and O if the child survived during the
age-period for child ¢, in household £, in district d of state s, in survey year ¢t. While our primary
outcome variable is under-five mortality, it is important to acknowledge that the detrimental
effects of pollution can be age-specific with exposure to IAP possibly more detrimental for
younger children.

The key regressor is a binary variable (Polluting Fuel, ;) which indicates the primary
cooking fuel type and is hence a proxy for indoor air pollution within a household. Ten types of
cooking fuel are reported in the DHS datasets, and we classify these fuels into two groups — clean
and polluting — based on the level of smoke produced during cooking. Clean fuels include biogas,
liquid petroleum gas (LPG) or natural gas, and electricity while polluting fuels include animal
dung, agricultural waste, straw, shrubs or grass, firewood, charcoal, coal or lignite, and
kerosene.”"!® The vectors Household g, Mother;pgs;, Child;pgs, and District gy are respectively
household-specific (h) characteristics, mother-specific characteristics for child ¢, child-specific (z)
characteristics, and district-specific (d) characteristics that are potential determinants of under-five
mortality. We discuss each of these in detail below.

Household characteristics. We include the urban or rural classification for place of
residence, household wealth index (high wealth, middle wealth, or low wealth)!!, type of house:
either pucca (made with durable materials) or semi-pucca / kachha (constructed with non-durable
materials like mud, cloth or unprocessed wood), and number of household members!? as potential
socio-economic factors (Bassani et al., 2010; Ezeh et al., 2014; Naz et al., 2016).

A significant factor determining the link between cooking fuel choice and the intensity of IAP
is the location within the household where food is cooked. We exploit detailed observations on

YEmpirical evidence suggests that households often use multiple fuels simultaneously, as in the energy ladder model
(Heltberg, 2005) or the alternative, fuel stacking (Heltberg et al., 2000). However, since the DHS survey records only
the primary fuel used for cooking, we are not able to address the issue of multiple fuel use, and focus instead on
assessing the implications of primary fuel use.

10As an alternative to our baseline dummy variable of polluting fuel use, we also considered access to electricity
as another measure of cooking energy source to capture fuel stacking behavior. However, as we show in Table B.1,
access to electricity is not correlated with the use of electricity as a primary cooking fuel source — the relationship
is almost negligible when no controls are included (Column (1) of Panel A), and zero once we control for household
characteristics in our preferred specification (Column (4) of Panel A). Electricity access is positively and statistically
correlated with the use of electric fans and television at the 1% level, even after controlling for fixed effects and
household characteristics (Panels B and C). We conclude that access to electricity is not a sufficient condition for
the use of electricity as a primary cooking energy source.

I"The index of household wealth was constructed by principal components analysis, with weights for the wealth index
calculated by giving scores to the asset variables, for example, ownership of durable goods, transport, and facilities in
the household. “Low wealth”, “middle wealth”, and “high wealth” are defined as the lowest 40% of households, the
middle 40% of households, and the top 20% of households, respectively (Filmer and Pritchett, 2001).

12Number of household members refers to the total number of members living together in a household, which is not
necessarily the same as family size. The average household in the survey has seven members. However, as many as 46
people can be present in one household (the maximum is 41 in the DHS-4 data), and in general, households with greater
than 25 members could be considered as outliers. A noteworthy correlation between household size and cooking fuel
choice stems from the fact that manufactured gas stoves limit the volume of food that can be cooked in a single sitting
relative to wood-burning furnaces that can be tailored to any size.

6



cooking location — in the living room, in the kitchen separate from the living room, in a separate
building, or outdoors — embedded within the DHS-4 survey to proxy for the extent of exposure to
polluting fuels.'

Mother characteristics. The key characteristics of the mother that correlate with infant
health and mortality are educational attainment (secondary/higher, primary, or no education)
which can signal knowledge about child care and about available health interventions (vaccines,
supplemental nutrition, etc.), and mother’s age (<20, 20-29, 30-39, and 40-49 years) that proxies

child-rearing experience.'*

Child characteristics. We consider the gender of the child and breastfeeding status (whether
the child was ever breastfed): breastfeeding may protect children from under-five mortality,
particularly in the neonatal and post-natal periods (Cushing et al., 1998; Arifeen et al., 2001;
Black et al., 2003; Ezeh et al., 2014).

District characteristics. Biomass fuel use contributes to both indoor and outdoor air
pollution and infant mortality is affected by both. Potentially, one can either use district-wise
concentrations of fine particulate matter (PM,s—particulate matter or inhalable particles with
diameters of 2.5 micrometers and smaller) or adult mortality rate to approximate outdoor air
pollution since adults tend to be more exposed to ambient air pollution which is likely to
contribute to reduced life expectancy via stroke, heart disease, lung cancer and respiratory
diseases (Chen et al., 2013; Ebenstein et al., 2017). A comparison of India’s 2014 district-wise
ambient air pollution (PM,;5) with the 2015-2016 district-level adult mortality rate in Figure B.1
shows that these two indicators are positively associated. Furthermore, the adult mortality
measures in our sample are positively correlated to PM, s level at the 1 percent level. In particular,
the mortality rate for 15-49 years old adults is weakly but positively correlated to ambient air
pollution, while the correlation is much stronger for mortality of adults older than 50 years, which
is consistent with estimates from Global Burden of Disease (2017).!> We use the adult mortality

13The DHS-1 and DHS-2 questionnaires ask respondents whether the household has separate room as the kitchen.
This does not allow us to distinguish between cooking in different indoor locations and outdoor cooking. The DHS-4
(2015-16) includes a variable indicating whether a household cooks inside the house, in a separate building, or outdoors
in addition to a question of the separate kitchen. We combine these two variables to construct the cooking location
measure used in our regressions.

14The care burden that mothers carry can also increase with employment. While the DHS data reports information on
the mother’s current working status, employment in the last 12 months, and other related employment-related variables
such as type of earnings from work, nearly 85% of the observations of these variables are missing in the DHS-4 data.
Since this is the primary dataset in our IV estimation, we do not include the mother’s employment status or other
related variables in our analysis to avoid potential bias from sample selection. However, we indirectly account for the
mother’s employment status since we control for the mother’s characteristics correlated with her employment, such as
the mother’s educational level and household income, as shown in Afridi et al. (2018) and Sarkar et al. (2019). Previous
evidence from India suggests that women with higher education spend more time on domestic work and childcare and
less on market work (Afridi et al., 2018).

SThe correlation coefficient between 2014 PM, s and the 2015-16 adult mortality measures calculated using the
DHS-4 data is 0.0339 (SE: 0.0020, p-value: 0.00) for 15-49-year-old individuals and 0.4753 (SE: 0.0018, p-value:
0.00) for 50 years and older individuals at the district level.


http://ghdx.healthdata.org/gbd-results-tool

rate since it reflects not just ambient air pollution but also other health-related district
characteristics that proxy public health conditions like the number of hospitals and health policy
interventions within the district.

We use the following district-specific adult mortality measure for each of the two consecutive
age groups of 15-49 and 50 years or older to control for health-related time-varying district
characteristics that are likely to explain the probability of child 7’s mortality incidence:

Number of adults died,

Adult mortality rate;,, =
HIE mOTIALLy Tate gyt Number of adults died],, + Number of adults alive,,’

2)

where Number of adults died,, is the total number of adults from survey households who died
when being in the specified age-range over the past 7 € {0, ..., 4}'® years before the survey year ¢
in district d of state s, and Number of adults alive,, is the total number of adults from surveyed
households alive by the time of survey year ¢.!” Since our qualitative results stay the same for
different 7 suggesting that the recall bias is evidently not present in our sample, we report the
results for 7 = 4, i.e., adults who died in a district over the preceding four years before an
interview.

The error term, €;,45, captures the remaining unobserved, time-varying, and child-specific
factors. We include an interaction between state and time fixed effects, 7, to control for possible

8 The interaction term

unobserved state-specific characteristics that vary over time.'
nonparametrically controls for state trends in under-five mortality, which is important in light of
the time patterns observed in Figure 1. The under-five mortality rate remained stable at around
3% throughout the period from 1992-1993 to 2015-2016 for children in households using clean
fuels, while their counterparts in households where polluting fuels are used face an almost

quadrupled (in 1992-93) to doubled (in 2015-16) risk of mortality. Most of these results for

16The DHS survey records deaths over the past 4 years before the survey year at furthest and hence 7 € {0, ... ,4}.
Also taking advantage of data on causes of death recorded in the DHS, we calculate the mortality shares for those who
died due to causes other than accident, violence, poisoning, and homicide or suicide, assuming that these five causes
of death are less likely to be correlated with ambient air pollution or health system.

"We also used Number of adults alive,, , . as an alternative where 7 € {0,...,4}, and the measure did not
change significantly. The correlation of this alternative measure with the corresponding mortality measure using
Number of adults alive ;,, is more than 0.98 for all five values of 7.

BControlling for state x time fixed effects allows us to estimate the effect of region-specific characteristics
varying over time, which can be seen as regional (or neighborhood) differences such as culture, weather conditions,
environmental features, and local-level policies or programs on cooking fuels. For example, the government of
India initiated the National Programme on Improved Chulha (NPIC) in the early 1980s to provide efficient cooking
stoves to rural areas in an attempt to limit air pollution. NPIC became a nationwide program in the mid-1980s,
and approximately 35 million improved cookstoves were distributed by the late 2000s. In late 2009, the Indian
government also implemented a state-level voucher program, the National Biomass Cookstoves Initiative (NBCI).
The pilot project distributed 12,000 improved cookstoves to households in the states of Jammu and Kashmir, Uttar
Pradesh, Bihar, Madhya Pradesh, Jharkhand, Chhattisgarh, Karnataka, and Odisha (https://pib.gov.in/newsite/
printrelease.aspx?relid=94877). Although existing studies such as Hanna et al. (2016) and Khandelwal et al.
(2017) suggest the non-use of improved cookstoves distributed by the government programs in India, the set of state
dummies in the baseline regressions addresses these and any other state-level policies.
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under-five mortality are driven by infants. Across the different under-five age groups, mortality
rates vary, and noticeable downward time trends apply to all age groups. The most at-risk group is
neonates, and the associated neonatal mortality rate is the highest at 4.4% (1992-93) to 3.1%
(2015-16). Post-neonatal mortality rate is next, at 3.0% (1992-93) to 1.3% (2015-16). Child
mortality ranged from 1.1% (1992-93) to 0.3% (2015-16). It is worth noting that we cannot
control for district or district X time fixed effects because one of our instruments, change in forest
cover, is defined at the district level and only observed once across time.
Heteroskedasticity-robust standard errors are clustered at the district level.

3 Identification

The key identification challenge is the potential endogeneity resulting from non-random use of
polluting fuels. The empirical literature on the nexus between air pollution and health outcomes
assumes the relationship to be unidirectional: that air pollution affects mortality and other human
health outcomes, but not vice versa. For example, Duflo et al. (2008) document the potential
impact of IAP on health, productivity, and ultimately long-term earnings. In our context, IAP and
choice of fuel types for cooking can be affected by mortality, morbidity, and other health
outcomes in addition to income. Given that low-income households can only afford cheaper fuel
options which are frequently more polluting and have negative health and earnings implications,
one valid concern is the simultaneity between the choice of cooking fuel and infant health
outcomes in equation (1). Additionally, given that we use repeated cross-sectional data, we cannot
control for fixed effects at the granular (or micro) level, e.g., child fixed effects or household fixed
effects. Although we include a set of controls as detailed as we can in our setting, there could be
still some unobserved characteristics that our controls fail to capture which can lead to an
identification threat due to omitted variables bias. We address these concerns via the use of two
instrumental variables (IVs): (i) the district forest cover as a region-specific characteristic and (ii)
household ownership of agricultural land as a household-specific characteristic to generate
plausible exogenous variation in the household fuel choice. These are discussed in detail below.

Forest cover. In the absence of data on prices of firewood and LPG, the main fuels for
cooking in India, forest cover provides a proxy for the relative price (cost) of firewood at the
district and/or village level.'

As we illustrate below, the forest cover is indeed relevant to generating meaningful variation in

YKuo and Azam (2019) analyzes the drivers of household’s choice of cooking fuel in India by estimating a panel
multinomial logit regression with random effects based on two rounds of the India Human Development Survey.
Cooking fuel choice is shown to depend on different factors based on the geographical location of the household.
While paved roads and peer effects significantly increase the probability of clean fuel choice for rural households, the
bargaining power or economic status of women (captured via education, financial independence, and freedom to make
decisions in general) and the price of LPG are critical determinants of clean fuel adoption in urban areas.



the opportunity cost of cooking fuel choice. Wood is the most widely used cooking fuel in India.
Figure 2 shows that one-half of the Indian households covered by the four rounds of the DHS rely
on wood as fuel for cooking. The second dominant cooking fuel is liquid petroleum gas (LPG)
and natural gas, with a share of 32.4%. The other clean fuels account for only 1.4% (electricity is
0.9%, and biogas is 0.4%). Overall, based on our classification of cooking fuels, one-third of
Indian households have been consuming clean fuels. The remaining two-thirds relied on polluting
fuels for cooking over the past 25 years. The second and third most widely used polluting fuels are
animal dung and crops, respectively, which are more prevalent among households with
agricultural land. Forest cover generates variations in access to or availability of firewood for
cooking, and households living in villages with forest cover use firewood twice as much as
households in villages without (Pinto et al., 1985). Figure 3 illustrates India’s district-wise forest
cover in 2013 based on satellite data from the Planning Commission of India. While areas with
dense forests are geographically concentrated in the northern, eastern, and southern regions,
moderately forested areas are located in the central and central-east regions. From DHS-4
(2015-16), the share of households using solid fuels for cooking in the five states with forest cover
above the country average in 2013 (90% in Jharkhand, 89% in Odisha, 87% in Assam, 85% in
Chhattisgarh, and 81% in Madhya Pradesh) is substantially larger than the country average at
75%, suggesting that cooking fuel choice is indeed correlated with the location of forests. Figure
4a shows the positive relationship between forest cover and the use of polluting fuels for cooking
in these five states at the district level.

Coincidentally, the under-five mortality rates in these same five states (6.0% in Jharkhand,
5.8% in Odisha, 6.2% in Assam, 6.0% in Chhattisgarh, and 7.0% in Madhya Pradesh) are also
persistently higher than the country average of 5.4%. Figures 4b and 4c illustrate that the
under-five mortality rate is positively associated with the use of polluting fuels for cooking and
forest cover, respectively, for these five states. This suggests that forest cover is likely to be linked
to infant mortality via biomass fuel use. Forest cover is a geospatial variable, and hence is likely
to induce plausible exogenous variation in cooking fuel choice that is not correlated with the
unobserved, time-varying, and child-specific shocks.

It is worth pointing out the reason as to why the forest cover at the district rather than at the
village level is used as an instrument. To protect the identity of respondents, the DHS randomly
displaces primary sampling units (PSUs, or villages/city blocks). This puts limits on the accuracy
with which PSUs can be matched with Census locations and other datasets at sub-district (or
tehsil) and village levels.?’ Figure B.2 illustrates the displacement strategy of PSU points in
DHS-4, and how the displacement buffers may mask DHS survey respondents’ residence location

20 According to the description of the DHS GPS data provided by the DHS Program, the displacement is restricted so
that the PSU points stay within the country, the DHS survey region (state), and district area. Therefore, the displaced
cluster’s coordinates are located within the same country, state, and district areas as the undisplaced cluster. This
random error can substantively affect analysis results, where analysis questions look at small geographic areas including
sub-districts and villages/city blocks.
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at the sub-district and village levels. In particular, the PSU point provided in the DHS-4,
illustrated by the star, could be anywhere within the buffer that overlays multiple villages and even
sub-districts. So the PSU point placed in a particular village could be, in fact, in a different village
of the neighboring sub-district. Although the PSU point displacement is random, it can affect our
empirical analysis since we match DHS data with satellite and Census data by location.

We obtained district-level satellite data on forest cover from the Planning Commission of India
(replaced in 2015 by the National Institution for Transforming India—NITI Aayog) for three years—
2007, 2011, and 2013.2' The baseline regressions use the forest cover for 2013, which is the most
recent and the closest period to the survey year used in the IV estimation. We also use forest cover
data from 2011 as a robustness check. The forest cover is defined by forested area as a percentage
of total geographical area, based on data from the NITI Aayog.??

An alternative measure of forest cover is available from the 2011 Indian Census which
provides village-level data on land covered by forests (in hectares). We define forest cover as
per-capita forested area (hectare/person)** and percentage of the total geographical area of the
village occupied by forests. The village-level data on population and the geographical area of the
village also come from the 2011 Census of India. Because areas inhabited by tribal populations
and inaccessible hilly geographic areas present a problem in the nationwide ground-level census
of trees in India (Foster and Rosenzweig, 2003), we prefer the satellite-based data as our primary
measure of forest cover and use the census-based measure as a robustness check. The bivariate
correlation of satellite-based forest cover with census-based forest cover is 0.68 in 2011 which
shows that the Indian census- and satellite-based tree cover data are indeed different but quite

comparable.

Agricultural land ownership. The second instrument we use for cooking fuel choice is
household agricultural landownership - a binary variable that takes the value of 1 if the household
owns land for agricultural purposes in a given year. Agricultural landownership generates
exogenous variations in the opportunity cost of cooking fuel choice, as agricultural households are
likely to consume their own agricultural crop waste and animal dung as cooking fuel which are
classified as polluting.?* A common argument is that infant mortality is negatively associated with

2I'The satellite-based forest cover data is collected every two years, and data on change in forested area from the
previous round is included in each round of the satellite data. Thus, we calculate the forest cover for the years 2005
and 2009 using data for 2007 and 2011 data, respectively. This gives us a total of 5 years of satellite-based forest cover
from 2005 to 2013 at the district level.

220n the Planning Commission dataset, forest cover refers to all land masses at more than one hectare in area, with
a tree canopy density of more than 10 percent irrespective of ownership and legal status. It also includes orchards,
bamboo, and palm. The satellite-based data on tree cover has been classified into four categories based on tree canopy
density, including very dense forest, moderately dense forest, open forest, and scrub. We consider the first three of
these forest types in our analysis excluding scrub.

23We find that the results are independent of whether we use total population or total area for normalizing forest
cover, and we do not report results using per-capita forest cover because the results are essentially the same as those
using forest cover as a percentage of total geographical area.

24Relatedly, crop residue contribute significantly to household energy needs for smallholder households in
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ownership of agricultural land through a wealth/income channel given that agricultural production
is a prominent source of household income and wealth. Although Figure 5a illustrates a negative
relationship between infant mortality and household wealth, Figure 5b in contrast shows that
agricultural land ownership status is non-monotonically associated with household wealth. The
correlation between agricultural land ownership status and household wealth index is -0.07 (SE:
0.0020, p-value: 0.00). It suggests that agricultural landownership is not a good proxy for
household wealth in our context, given numerous households that own small-sized and
subsistence farms. This result is independent of how many groups we split households into, e.g.,
five groups or three groups.?

Validity of instruments. Four assumptions must be satisfied for us to interpret our results as
causal. In Section 4.2, we formally test the validity of our instruments in terms of the first two
assumptions: relevance (instruments are correlated with the endogenous regressor) and
independence (instruments are uncorrelated with any confounders of exposure-outcome
relationship). First, we adopt the Montiel-Olea and Pflueger weak IV test for overidentified
models to assess the relevance of the two instruments in our model. This method yields the same
robust F-statistic as the traditional tests developed by Staiger and Stock (1997), Stock and Yogo
(2005), and Kleibergen and Paap (2006) in the just identified case (Olea and Pflueger, 2013).
Comparing the effective F-statistic from the Montiel Olea-Pflueger weak IV test with the popular
rule-of-thumb threshold of 10 can also be informative. We show that the endogenous regressor
and the instruments are strongly correlated, suggesting that the relevance assumption is valid.

Second, in the light of our overidentified model, we test the restrictions that all IVs are
uncorrelated with €4 and that the instruments satisfy the independence or orthogonality
condition (Sargan, 1958; Hansen, 1982; Altonji et al., 2005). Third, although we formally test the
relevance and independence of our instruments as discussed above, the exclusion restriction
(instruments affect the outcome only through endogenous regressors) is not directly testable. As a
result, in Section 4.3, we present additional evidence that the two instruments affect under-five
mortality mainly through cooking fuel choice in our context.

Fourth, since we combine multiple instruments for a single endogenous treatment variable in a
two-stage least squares (2SLS) setting, we need to verify that the well-known monotonicity
assumption — the 2SLS estimate is a positively weighted average of local average treatment effects
(LATEs) (Imbens and Angrist, 1994) — is satisfied. In our setting, the endogenous variable is
polluting cooking fuel, which we instrument for using agricultural land ownership and forest
cover. In this context, Mogstad et al. (2021) show that the 2SLS estimates can be a positively
weighted average of LATEs under a “partial monotonicity” assumption.

developing countries such as Sub-Saharan Africa that rely on solid biomass fuels for cooking (Berazneva et al., 2018).

25While the DHS data does not directly include actual earnings, we find (unreported here) a negative and statistically
significant relationship between agricultural land ownership and principal components of household wealth index which
includes ownership of refrigerator, television, washing machine, electric fan, air conditioner or cooler and computer,
after controlling for time and spatial fixed effects.
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We verify the partial monotonicity condition in Table 2. Panel A of Table 2 reports
coeflicients from regressing the endogenous variable, polluting fuel use, on each instrument
separately, along with a coefficient from regressing agricultural land ownership on forest cover.
These regressions also control for baseline covariates. Column 1 shows that controlling for the
covariates (but not the other instrument), the correlation between each instrument and the
treatment is positive and statistically significant. It follows that the weights for each complier
group must be consistent with the partial monotonicity assumption. Column 2 demonstrates that
the partial correlation between the two instruments is essentially zero. This independence of
instruments from each other also guarantees that the 2SLS weights are positive even if the
traditional monotonicity assumption is violated. —The joint distribution of the given two
instruments, therefore, is sufficient to yield positive weights. Panel B of Table 2 presents the same
results when forest cover is defined as a binary variable indicating whether the district’s forest
cover is above the mean. We do so to strictly follow the formal statistical tests proposed by
Mogstad et al. (2021) for binary treatment and binary instruments. The results similarly suggest
that the partial monotonicity assumption is satisfied when we have a binary measure of forest
cover. Consistent with the strong positive correlations, the null hypothesis of negative weights is
strongly rejected (p = 0.000), and the null hypothesis of positive weights is not rejected
(p = 1.000). These findings provide credence to the validity of the partial monotonicity
assumption in our context and allow us to interpret our IV/2SLS estimates as causal.

Table 3 presents summary statistics for cooking fuels, infant mortality, and other
demographics. A majority (75%) of the households use polluting fuels, while the remaining
households use clean fuels (electricity, LPG, natural, and bio-gas) fuels for cooking. Infant
mortality rates are systematically higher than the national under-five mortality rate of 5.4%.
Further, three-fourths of the children belong to households located in rural areas. Overall, across
rural and urban areas, 69.8% of the mothers with children aged under five are in the 20-29 years
old age bracket. Other socio-economic indicators exhibit an even distribution including household
wealth, mother’s education, gender of child, breastfeeding status, location where food is cooked,
and type of house. The average household size is seven, and the average adult mortality rate is,
respectively, 1.0% and 8.5% for those with ages 15-49 years and 50 years or older.

Table 4 provides the mean and standard deviation for the five outcome variables (infant
mortality for different age groups) and the key explanatory variable (type of primary cooking fuel)
by geographic region, along with the associated number of observations. Evidently, infant
mortality rates and fuel choices vary significantly across regions nationwide. Out of ten
states/union territories (UTs) with the highest incidence of under-five mortality and the highest
share of polluting fuel-using households, six of them are common, including Madhya Pradesh,
Assam, Bihar, Chhattisgarh, Odisha, and Jharkhand.

The number of observations in Tables 3 and 4 varies across variables mainly because some
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variables are not collected in different rounds of the DHS. For example, as we discussed earlier,
the variable indicating where food is cooked was only collected in the DHS-4 survey. This leads
to a substantial difference in the number of observations across specifications with and without
this control. Other minor differences in observations are due to a few missing observations in the
data, for example, variables on cooking fuel choice, type of house, mother’s education level, and
other variables used in measuring adult mortality rate. To examine whether our descriptive results
in this section are affected by the samples, we summarize the data on a common sample and show
that the results are not driven by the choice of specific sample (see Tables B.2 and B.3). It is worth
noting that our main results from I'V estimation are not affected by these different samples because
IV estimates are based on the DHS-4 survey. In the next section, we discuss and investigate the
sample differences for our non-IV or probit results.

We use a survival analysis to provide descriptive evidence that a child’s vulnerability to indoor
air pollution varies by age. Figure 6a presents the likelihood of surviving for children at different
ages from clean and polluting fuel-using families and shows that (i) the proportion of surviving
children is lower in polluting fuel-using households, and (ii) the incremental change in the likelihood
of survival decreases as child’s age increases. The Kaplan-Meier survival estimates suggest that
the likelihood of survival is lower for polluting fuel-using families than the clean fuel-using ones,
and the gap between the two lines is widest for younger infants (Figure 6b).

4 Results

We first present the estimated average marginal effects?® of cooking fuel choice on child mortality
using a probit model followed by the linear IV estimates.

26Marginal effects are generally computed using two methods: average marginal effects (AME) and marginal effects
at the means (MEM). MEM is calculated by setting the values of all covariates to their means within the sample. To
obtain AME, the marginal effect is first calculated for each individual with their observed levels of covariates, and these
values are then averaged across all individuals. Since our independent variables, except for the number of household
members, including our key regressor, fuel choice, are binary variables, the average marginal effects measure a discrete
change in predicted probabilities as the binary independent variables change from O to 1. For probit regression, the
average marginal effect of x;, = (x15 -+ - T4 - - ka)’(le) ony = (y1 Y- yN)’(le) is calculated by

AME = ;XE (f(wéﬁlxik = 1) - f(”’:ﬁ‘m““ - 0))

where f(-) is the probability distribution function for a standardized normal variable, z; = (i1 - - - Tix - - - Tik ) (1x K)
is a vector of explanatory variables, and N and K are the number of observations and the number of regressors,
respectively. Intuitively, for example, the AME of fuel choice reports the percentage point change in the probability of
under-five mortality with a change in polluting fuel for cooking from 0 to 1. The standard errors of the AMEs in this
paper have been computed using the Delta method.
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4.1 Probit estimates

Table 5 presents the results obtained by estimating equation (1) as a pooled probit model for child
mortality within different age groups under three separate specifications wherein more controls
are added successively. In panel A for under-five mortality, the average marginal effect (AME) of
polluting fuel for cooking ranges from 2.3 to 0.8 percentage points. The basic model, shown in
Column (1), includes year and state fixed effects?’ and is estimated using DHS-1, DHS-2, and
DHS-4, while the models shown in Columns (2) and (3) are based exclusively on DHS-4 since
information on the location of cooking is only available in this last round. Given that the
calculated marginal effects of polluting fuel use are consistently greater than zero and statistically
significant at the 1 percent level for each specification, it is clear that IAP is positively linked with
the mortality risk amongst children aged under five in India. We consider the last regression as
our primary specification for probit estimates because the inclusion of state x year dummies
controls for unobserved time-varying spatial factors including state attributes (e.g., characteristics
of state magistrate, presence of government-sponsored programs covering child health services in
the state, and access to medical facilities) and local characteristics (e.g., distance from urban areas
and large cities, percentage of districts, sub-districts, or villages with paved roads, outdoor air
quality, and quality of soil and water resources) that could potentially affect both under-five
mortality and fuel choice.

To examine the relationship between cooking fuel choice and infant mortality at a more
disaggregated level, we partition under-five children into two mutually exclusive sub-groups:
child (ages 1-5) and infant (until age one). Comparing Columns (3) across panels B and C reveals
that infants are more sensitive to the use of polluting fuel for cooking as the estimated coefficient
on the fuel choice variable is an order of magnitude larger in the infant mortality regression. To
further investigate the relationship at an even more disaggregated level, we divide infants into two
separate age groups: post-neonatal (greater than 28 days but less than 1 year) and neonatal (until
28 days after birth). Comparing the last column in panels D and E shows that the effect of
polluting fuel choice among infants is driven by neonatal mortality, while the association between
polluting fuel use and post-neonatal mortality is not statistically significant. This is not a
surprising result given that neonates, with undeveloped immune systems, spend the most time
with their mothers and are therefore at the highest risk of exposure to IAP associated with dirty

cooking fuel choices.?®

2TWe do not introduce district fixed effects in equation (1) because the instrument of forest cover in 2013 is at the
district level.

28The number of observations in Table 5 drops substantially when we move from Column (1) to Columns (2) and
(3) because these last two columns use only the DHS-4 sample. To examine whether the changes in estimates are
because of the sample change or because of the inclusion of demographic characteristics, we estimated the same sets
of specifications on a common sample for each age group. The results, shown in Table B.4, suggest that the changes in
estimates are mainly due to the inclusion of additional covariates. Restricting the sample to a common sample reduces
the estimates in Column (1) to some extent, but the qualitative results remain the same.
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The estimated coefficients on other explanatory variables are reported in Tables B.5-B.9 for
under-five, child, infant, post-neonatal, and neonatal mortality, respectively. The estimates on the
relationship between other characteristics and mortality for children under five years of age are
qualitatively consistent with the literature (Naz et al., 2016). Zeroing in on the average marginal
effects of the explanatory variables for neonatal mortality we find that the mortality risk is the
highest when mothers do not breastfeed. In addition, neonatal mortality is positively associated
with teenage motherhood and negatively related to the mother’s education. Neonatal mortality is
also higher in households of middle- and low-wealth compared to the high-wealth ones,
households with no separate kitchen inside the house, and households that live in semi-pucca and
kaccha (makeshift and temporary) houses. Controlling for these variables, cooking outside is
essentially the same as cooking in the living room in terms of their association with mortality. We
also find that under-five, infant, post-neonatal, and neonatal mortality are higher in districts with
high adult mortality rates. Finally, specifications with district and district x time fixed effects
yield qualitatively identical estimates.

We also estimate linear probability models instead of probit regressions. The OLS results
(Tables B.10-B.14) are qualitatively similar to our baseline results from probit models.
Particularly, the use of polluting fuel for cooking is positively associated with under-five mortality,
and the positive association is concentrated among infants and neonates.

4.2 Linear IV estimates

We first present evidence on how forest cover and agricultural land ownership relate to
households’ choice of cooking fuel types. The relationships are estimated using a linear model,
where the dependent variable is a binary indicator for whether fuel choice is dirty or clean. The
correlation coefficients for forest cover and agricultural land ownership with polluting fuel use for
cooking are 0.0149 (SE: 0.0022, p-value: 0.00) and 0.1795 (SE: 0.0022, p-value: 0.00),
respectively.

Column (1) of Table 6 reports the first-stage results when the indicator variable for
household’s agricultural land ownership is used as an IV. This variable has a positive and
statistically significant impact on cooking fuel choice via the likely use of their own agricultural
crop waste and animal dung as cooking fuel. Columns (2)—(6) of Table 6 present the estimates
from the IV (2SLS) regressions for the five different age groups. The coefficient estimates on
polluting fuel for cooking for under-five, infant, and neonatal mortality are indeed positive and
statistically significant, ranging from 0.036 to 0.047.

Table 7 presents our main results when forest cover and an indicator variable for household’s
agricultural land ownership are jointly included as IVs. Column (1) in the top panel reports the
first-stage results. The effective F-statistic of Olea and Pflueger (2013) is above the critical value
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of 17 for a worst-case bias of 10 percent (at 5 percent statistical significance) and is well above the
rule-of-thumb threshold of 10, indicating that the two IVs provide plausible variations in fuel
choice that can be leveraged to identify a causal effect of fuel choice on infant mortality. Columns
(2)—(6) in the top panel present estimates from the IV (2SLS) regressions for the five different age
groups. Heteroskedasticity-robust standard errors are clustered at the district instead of the PSU
level, given that we use district-level forest cover as one of the instruments. The Hansen test
implies no rejection of the null hypothesis of valid instruments and suggests that the excluded IVs
are exogenous. The coefficient estimates on polluting fuel for cooking for under-five, infant, and
neonatal mortality are positive and statistically significant at the 5 percent level, ranging from
0.030 to 0.041. Specifically, the estimated effects on under-five, infant, and neonatal mortality
rates are 0.040 (standard error = 0.020), 0.041 (standard error = 0.019), and 0.030 (standard error
= (0.015), respectively. These suggest that approximately 27 under-five children and infants and
about 20 neonates would have been saved per 1,000 live births economy-wide if all households

used clean fuels for cooking.?3°

Our analysis points to a non-trivial impact of polluting fuel use on under-five, infant, and
neonatal mortality in India, and we need to ensure that these results hold up both under further
technical scrutiny as well as when accounting for a couple of unique socio-demographic features
of Indian households. Technically, we need to confirm that the conventional
heteroskedasticity-robust variance of the 2SLS estimator is not misleading since our local average
treatment has heterogeneous effects. Specifically, the concern might be that the moment condition
evaluated by the two-stage least squares (2SLS) estimand — a positively-weighted average of
multiple local average treatment effects (LATEs) given more than one instrument — is
misspecified (Lee, 2018). As a result, Table 7 also reports heteroskedasticity standard errors
robust to multiple-LATEs which confirms that the statistical significance of our key explanatory
variable remains unchanged.

In terms of the unique socio-demographic features, we first isolate households that exclusively
rely on biomass fuels (which coincidentally also happens to be the cooking fuel choice of the poor
in rural India), and second, differentiate by household size which can determine either the
feasibility of switching to cleaner fuels or reducing the burden of cooking on mothers. We discuss
these in detail below.

Singling out biomass fuels. Studies such as Imelda (2018, 2020) that causally estimate the
impact of IAP on infant mortality focus exclusively on the impact of a switch of cooking fuel from

PThe counterfactual mortality estimate per 1000 live births is derived based on the difference between (i) the
predicted under-five mortality rate (= 0.040583) using observed controls including cooking fuel choice and the IV
(2SLS) coefficient estimates, and (ii) the predicted under-five mortality rate (= 0.013678) using observed controls
except for cooking fuel which we assume for this exercise that every household refrains from using polluting cooking
fuel. We then rescale to give (40.583 — 13.678) 26.905 deaths per 1000 live births. Upon rounding, we arrived at the
27 deaths per 1000 live births.

30Table B.15 shows the full version of Table 7, providing coefficient estimates on all covariates.
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kerosene to LPG, thereby excluding the dirtiest biomass fuels (including animal dung, agricultural
waste, straw, shrubs, grass, and firewood) commonly used in the developing world. However,
evidence suggests that biomass fuels, being the cheapest, are not only the preferred choice for a
vast majority of poor households they are also far more dangerous to human health than kerosene
(e.g., Fullerton et al., 2008). Hence, it is important to check for the risk of under-five, infant, and
neonatal mortality due to the use of only biomass fuels, doubly so since these are the key fuel
choices influenced by our IVs. The causal effects of biomass fuel for cooking on under-five,
infant, and neonatal mortality rates range from 0.026 to 0.037 (Columns (2)—(6) in the bottom
panel of Table 7). Unsurprisingly, these numbers are lower than their respective counterparts
above (0.030-0.041) since biomass fuels are a subset of our complete list of polluting fuels.?! The
magnitudes of the causal effects of biomass fuels are nonetheless very close to the causal effect of
the full list, suggesting the central importance of biomass fuel choice in determining the impact of
IAP on child mortality.

Additional heterogeneity results by household size. The probit model suggests that the risk
of under-five mortality, as well as those of the four age sub-groups, are inversely and significantly
related to household size (Tables B.5-B.9). This is an intriguing relationship that requires further
unpacking. We identify three channels via which the size of a household might guide either
cooking fuel choice or the burden of cooking and childcare for resident mothers. These include (i)
a smaller household may find it easier to switch to cleaner fuels - LPG as an example - since
pre-fabricated gas stoves limit the size of cooking utensils that can be used (and therefore the
amount of food that can be cooked in a given sitting), (ii) if a child’s exposure to IAP is due
primarily to time spent near cooking locations with the mother, larger household size may
arguably relieve some of the burden of cooking or childcare on mothers and mitigate the child’s
mortality risk due to IAP, and (iii) if cooking outdoors is more practical for a larger household
(due to a larger volume of cooking required), then a child’s exposure to IAP will also decrease
even if the time burden of cooking duties for the mother is not shared. Our data permits a direct
check on the possibility (iii), and we find that household size is negatively correlated with cooking
in a separate building (p: -0.003, SE: 0.002, p-value: 0.162) and outdoors (p: -0.005, SE: 0.002,
p-value: 0.027).

Because of a potential non-linearity, we utilize data splits to analyze heterogeneous LATEs by
household size. We focus on the sub-population of households with fewer than twelve members
since such households constitute 96% of our sample. In our main analysis, we classify the sample
of households with twelve or fewer members into three equally spaced groups (1-4, 5-8, and 9-12
members). The joint F'-statistic on the excluded instruments indicates that the two IVs introduce
meaningful variations in fuel choice in all regressions estimated on these sub-populations. We

3I'The reason that the dirtiest fuel—biomass fuel—has a mortality impact smaller than overall polluting fuels is that
we include the other polluting fuels in the non-biomass category, including kerosene, coal or lignite, and charcoal, for
this regression, which raises the adverse health impact of the reference category. In other words, we compare the health
impact of the dirtiest fuel with that of other dirty fuels and identify their differential effect.
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find that the effect of under-five, infant, and neonatal mortality rates is 0.059, 0.056, and 0.048,
respectively, in households with 5-8 members (Columns (2), (4), and (6) in panel B of Table 8).
Panels C and D of Table C.2 show that this result is driven by households with 5-6 members,
which is smaller than the average household size of 6.9 members (see Table 3), as the coefficient
estimates essentially becomes zero for households with 7-8 members. The coefficient estimates on
IAP in under-five, infant, post-neonatal, and neonatal mortality for households with 1-4 members
are positive and statistically significant at least at the 5% level. However, the Hansen test rejects
the null hypothesis at the 5% and 10% levels, suggesting that the instruments are not valid for
these households. This lends credence to our hypothesis (i) above that child mortality in the
smallest household is not necessarily caused by polluting fuel use since these households can
easily switch to pre-fabricated gas stoves that only accommodate smaller cooking utensils. The
effect of IAP on infant mortality for all under-five age groups is essentially zero for larger
households with 9-12 members. Results thus indicate that infants are subject to a greater risk of
mortality due to IAP in households with 5-6 members - a household size that’s large enough to
preclude a switch to pre-fabricated gas stoves and small enough where mothers need to engage in
cooking and childcare simultaneously.*?

Additional heterogeneity by child’s gender. We also analyze heterogeneity by child’s
gender, given a preference for sons in India (Arnold et al., 1998; Jayachandran and Pande, 2017;
Jayachandran, 2023). There are two possibilities. Polluting fuels for cooking could have more
adverse effects on boys’ health if the only source of differential treatment comes from parents
spending more time caring for sons than daughters, including time spent near cooking locations.
Another possibility is that there are multiple sources of differential treatment by child’s gender,
including for example medical treatment, or pollution exposure adjustment if respiratory diseases
arise. The mortality effect we observe sums up the combined outcomes of pollution exposure and
ex-post medical treatment and/or exposure adjustments. As shown in Table 9, we find that the
adverse mortality effect of polluting fuel use is fact concentrated on girls. The coefficient estimate
on polluting fuels for cooking for mortality of under-five girls is 0.078, implying that 53 lives per
1,000 live births of girls are lost within five years of life due to the use of polluting cooking fuels.
This result is consistent with descriptive results from India’s DHS data, suggesting that under-five
mortality is higher among girls than boys.>* This may arise if (i) only girls are more exposed to
polluting fuels, or (ii) both boys and girls are exposed but boys are more likely to receive ex-post
care if the disease does arise, or both. This mechanism of girls being overlooked or receiving less
care from parents could be more compelling as previous studies in India suggest that women,

32In the Appendix C, we check whether size classification affects our results of heterogeneous LATE by household
size. The results with different size classifications consistently suggest that the adverse health impact of IAP on neonatal
mortality exacerbates as the household becomes smaller, except for small families with up to 3 members for which the
effects of IAP on neonatal mortality disappear. It is worth noting that the coefficient on IAP in the under-five, infant,
and post-neonatal regressions for some households becomes statistically significant, but the exogeneity test fails for all
those regressions of under-five mortality other than neonates.

Bhttps://www.unicef.org/india/what-we-do/newborn-and-child-health
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especially young girls, are neglected and mismanaged during illness more than boys. It is also
consistent with the fact that one of the dominant causes of excess female deaths in India is
respiratory diseases potentially due to polluting fuel use for cooking (Anderson and Ray, 2010).

Additional heterogeneity by status of male siblings. Given a preference towards sons (e.g.,
Jayachandran, 2023), one might consider that the effective care burden of a mother is more closely
linked to the number of male siblings of a child rather than the size of the household. Thus, we
estimate the mortality effects of polluting fuels with and without male siblings separately. As shown
in Table 10, the qualitative results are generally the same for children with and without male siblings.
The quantitative results suggest that the mortality effect is much more pronounced for children with
male siblings, as the coefficient estimates on under-five and infant mortality in the top panel are
almost twice as large as those in the bottom panel in magnitude. For neonatal mortality, the effect
is around three times larger for neonates with male siblings than those without any male siblings.

4.3 Assessing the exclusion restriction

We assess the validity of the exclusion restriction for our instruments via several tests below.

Zero-first-stage test. First, an informal but informative test, the zero-first-stage test, can be
used to lend some confidence that the exclusion restriction is reasonable (Van Kippersluis and
Rietveld, 2018). The method was first used by Bound and Jaeger (2000) and later popularized by
Altonji et al. (2005) and Angrist et al. (2010). The intuition of the approach is that the
reduced-form effect of the instrument on the outcome should be zero in a subsample for which the
first-stage effect of the instrument on the treatment variable is zero if the exclusion restriction is
satisfied. Although this analysis cannot be used to verify the exclusion restriction, we use this to
assess whether the exclusion restriction is plausible. We use a subsample of small households
from urban areas as the zero-first-stage sample since these households have limited access to
forests as a source of firewood and limited capability of growing crops and using agricultural crop
residues for cooking. Notable here is our focus on small household size as an additional
dimension that determines the relevance of our instruments to cooking fuel choice since small,
i.e., labor-constrained households, are unlikely to engage in farming (even if they own land) and
collect firewood (even if they reside close to a forest). Thus, we define the zero-first-stage
subsample as households from urban areas with three members or less, e.g., a child and two
parents.

Table 11 presents the results from this analysis. The first-stage effects of agricultural land
ownership (Column (1)) and forest cover and agricultural land ownership (Column (2)) on
polluting fuel use for cooking is essentially zero for small households from urban areas (panel
(b)), confirming that they are a valid zero-first-stage group. As expected, the effect of the
instrument(s) on cooking fuel choice is statistically significant, and instrument(s) are relevant
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(according to the Olea and Pflueger (2013) test for weak instruments) for both the full and
remaining samples (panels (a) and (c)). Consistent with the validity of the exclusion restriction,
the direct effects of agricultural land ownership (Column (1)) and forest cover and agricultural
land ownership (Column (2)) on under-five mortality are statistically insignificant for small
households from urban areas (panel (e)).

Additional indirect tests. Second, we estimate the association between determinants of child
mortality, other than cooking fuel choice, through the following regressions:

Yindst = o + By Forest Cover s + PoAgricultural Land Ownership, ., 3
+ Household sy + Mother ;g\ + Childipgs:0 + District j4m + Nt + Eindst s ©)
where ¥;,4s¢ iS a characteristic of child ¢ reported in the DHS data including a child’s
breastfeeding status — one of the most important determinants of under-five mortality found in
our baseline analysis. As a proxy for the mother’s health-seeking behavior, we introduce the
number of antenatal visits during pregnancy and the number of injections (of any kind) received
in the last 12 months in this specification. All other variables, including our baseline instruments
Forest Cover gs and Agricultural Land Ownership,, .., remain identical to those in equation (1).

Table B.16 reports the results from estimating equation (3) using OLS. The results show that
our baseline instruments are not correlated with variables commonly expected to be associated
with child mortality other than cooking fuel choice since the Olea and Pflueger (2013) test values
for the instruments imply that they are weak in those specifications. The coeflicient estimate on
forest cover is weakly significant at the 10% level in the maternal health regression. These
findings lend credence to the exclusion restriction in our context, given that our instruments do not
introduce noteworthy variation in the determinants of child mortality other than through the
cooking fuel choice.

As a final test, we consider the possibility that our instruments may be relevant to explanatory
variables of child mortality other than those investigated above and the cooking fuel choice. We
examine this in Table B.17 by using household size and mother’s education as examples of
household and mother’s characteristics, respectively, that are included in equation (1) as
determinants of child mortality in addition to polluting fuel use for cooking. We focus on
under-five mortality here since it is our most general child mortality outcome; however, the results
remain the same for mortality outcomes for other child age groups. Our baseline analysis suggests
that under-five mortality is associated with smaller households and less educated mothers (see
Table B.10), and that our instruments are relevant to these two variables since the effective
F-statistic on instruments are large enough (Columns (1) and (3) of Table B.17). However, IV
estimation results suggest that household size and mother’s educational attainment instrumented
by agricultural land ownership status and forest cover do not affect under-five mortality, unlike
cooking fuel choice that we find in our baseline analysis (Columns (2) and (4) of Table B.17).
This lends credibility to the exclusion restriction of the instruments in our context.
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5 Robustness checks

A battery of alternative specifications serves as robustness checks including (i) probit specifications
with instruments, (ii) a more refined definition of polluting cooking fuels, (iii) alternative forest
cover data, and (iv) an alternative definition of mortality outcomes for children in different age
groups.

5.1 Probit specification with instruments

We re-estimate the causal effect of cooking fuel choice on infant mortality using (two-step) IV probit
regressions as an alternative to the linear IV regression. We find that the IV probit provides the same
qualitative conclusion as the 2SLS regression, verifying that the results are robust to an alternative
approach. Table A.l presents the parameter estimates derived from the IV probit regression for
under-five, child, infant, post-neonatal, and neonatal mortality (with the same specification as used
in Table 7 where both forest cover and agricultural land ownership are used as IVs). The coefficient
estimates for the use of dirty cooking fuel on under-five, infant, and neonatal mortality are positive
and statistically significant and reinforce the positive relationship between cooking fuel choice and
the risk of mortality for the youngest children.

5.2 Redefining polluting cooking fuel

We disaggregate our key regressor by ranking fuel types from 1 (the cleanest fuel) to 10 (the dirtiest
fuel) based on their cleanliness or the energy ladder concept (Holdren and Smith, 2000). The
assigned values to different types of fuels used for cooking are: 1 = electricity, 2 = LPG or natural
gas, 3 = biogas, 4 = kerosene, 5 = coal or lignite, 6 = charcoal, 7 = firewood, 8 = straw, shrubs
or grass, 9 = agricultural waste, and 10 = animal dung. Table A.2 shows that the effects of a
household switching to a fuel type that is dirtier by one level down the energy ladder or increasing
the dirtiness level of cooking fuel by one unit on under-five, infant, and neonatal mortality rates are
0.007, 0.007, and 0.005, respectively. Notice that although the key regressor here (dirtiness level
of cooking fuels) is a categorical variable, our results remain remarkably similar to the baseline
results that use a binary variable that captures the use of polluting fuel for cooking.

5.3 Alternative forest cover data

We leverage satellite- and census-based data on forest cover (% of geographical area) in 2011 to test
whether we can identify a positive impact of polluting fuel use on under-five, infant, and neonatal
mortality incidences. Using data on 2011 satellite-based forest cover and tree cover from the 2011
Indian Census as alternates to a 2013 satellite-based forest cover, we find that our results remain
robust to the utilization of either satellite- or census-based tree cover for a single year as one of the
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IVs for household fuel choice (Tables A.3 and A.6, respectively). An exception is the under-five
regression, in which the coefficient estimate on polluting fuel use is no longer statistically significant
when census-based forest is used. However, the impact of polluting cooking fuel choices on infant
and neonatal mortality remains significant, indicating that the IAP impact on under-five mortality
is mainly driven by its impact on neonates.>*

5.4 Redefining the mortality outcomes

In our baseline analysis, we define the outcome of Child Mortality,;,,;,, for each of the five age
groups as an indicator variable that takes a value of 1 if the mortality occurred over the given age
period, and O otherwise. But, according to this definition, the mortality dummy for a particular
age group includes deaths that happened in different age groups, even if those periods during
which the deaths occurred are mutually exclusive. For example, in our baseline definition of
neonatal mortality, we code children who died younger than 28 days as one and everyone else,
such as those who died older than 28 days, as zero.® 1In this sub-section, we redefine our four
indicator variables of mortality for each age group by removing children who died outside of the
respective age group. First, in the alternative definition of neonatal mortality, we remove children
who died older than 28 days and keep everything else the same as the baseline definition. Second,
children who died younger than 27 days and between 1 and 5 years of age are dropped from the
alternative post-neonatal mortality measure. Third, children who died older than a year are
removed from the infant mortality measure. Fourth, we remove children who died younger than a
year old in this alternative definition of our child mortality measure. The baseline definition of
under-five mortality remains the same as it covers all five years preceding the survey - in effect,
the under-five mortality measure is indicated by a value of one if the child died within the first five
years of life and zero otherwise.

Table A.5 presents the probit estimates of the redefined mortality outcomes. Given that we
drop deaths that occurred in other age groups from each age-specific mortality variable, the
number of observations is slightly reduced compared to the baseline model in Table 5. However,
the sign and the magnitude of the average marginal effects (AMEs) and statistical significance of
estimates remain robust. Note that since we did not redefine the under-five mortality indicator, we
do not check for the robustness of the under-five mortality regression. As before, our results show
that polluting fuel use for cooking is positively associated with child mortality, and it is
concentrated amongst neonates. Interestingly, the positive relationship for post-neonates was not

3*Note that the Hansen J statistic suffers slightly when we use census-based forest cover, which could be due to
issues with the forest cover data from the Census as outlined in Foster and Rosenzweig (2003).

3Similarly, for post-neonatal mortality, we code children who died between 28 days and a year old as one and
everyone else, such as those who died younger than 27 days and between 1 and 5 years of age, as zero. For infant
mortality, we code children who died at an age younger than a year old as one and everyone else, such as those who
died older than a year, as zero. For child mortality, we code children who died between 1 and 5 years of age as one and
everyone else, such as those who died younger than a year old, as zero.
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statistically significant in the baseline analysis but is now statistically significant at the 10% level.

Table A.6 reports our main I'V results, showing that our results on the effects of polluting fuel use
on age-specific mortality are highly robust to the alternative definition of mortality outcomes. We
did not report the first-stage results and results from under-five mortality because they are similar
to the baseline. In addition to the estimation results, the test statistics also qualitatively remain the
same.

5.5 Controlling for breastfeeding duration

We control for the child’s breastfeeding status in our baseline regressions. However, previous
evidence suggests that girls in India tend to be breastfed for a shorter period than boys
(Jayachandran and Kuziemko, 2011; Dutta et al., 2022). As a result, breastfeeding status in itself
might not capture this gender difference in breastfeeding duration. While the DHS data reports
the duration over which a child was breastfed, the information is missing for about one-fourth of
the children for whom breastfeeding status is available. This is the main reason behind our focus
on the child’s breastfeeding status in our baseline analysis. However, we check the robustness of
our results by controlling for the child’s breastfeeding duration instead of the child’s breastfeeding
status, focusing on our main I'V results. As shown in Table A.7, the qualitative results are strongly
robust.

6 Conclusion

Many countries, especially in the developing world, have attempted to resolve IAP by
implementing programs to switch to clean fuels and adopt improved cookstoves. Notable amongst
these are (i) shifting fuel subsidies like The Mega Conversion Program from Kerosene to LPG in
Indonesia and the Promotion of Electric Induction Stoves to Reduce LPG Consumption in
Ecuador, (ii) subsidies for improved technologies like The Fondo de Inclusién Social Energético
LPG Subsidization Program in Peru, LPG subsidies through the Ujjwala Program in India and the
Rural LPG Program in Ghana, (iii) Microfinance for LPG Equipment in Kenya, (iv) consumer
credit initiatives like the Sales Offers for Improved Cookstoves in Uganda and Pay-as-you-Go
LPG in Kenya, and (v) conditional cash transfers for LPG use in India. The existing studies focus
on investigating the successes and failures of such programs in specific contexts and suggest that
the health benefits are limited to the short term. Countries fail to sustain the energy transition in
the long run due to a variety of factors, such as the absence of internationally-recognized clean
cookstove standards and limited in-country testing capabilities, lack of awareness among
households regarding the benefits of clean cookstoves and fuels, issues related to distribution and
supply chain, especially in rural areas and finally, the high initial cost of adopting clean
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cookstoves (Cordes, 2011).

Due to this, almost half of the world’s population in developing countries continues to depend
on dirty cooking fuels, which constitute the largest source of poor indoor air quality. The
consequence of dirty fuel choice, primarily biomass, on respiratory health is significant, with the
youngest household members - children under five - being the most vulnerable. Yet, no causal
estimate exists on the true impact of dirty fuel choice on under-five and infant mortality, even
though diseases attributable to indoor air pollution account for more deaths than malaria and
tuberculosis combined globally. Leveraging unique and large-scale household survey data from
1992 to 2016 and geospatial information on forest cover in India, where both the use of dirty
cooking fuel and child mortality is high, we find that the use of polluting fuels for cooking or IAP
has a significant and robust impact on under-five and infant mortality mainly via its effect on
neo-neonatal mortality.

Aside from being the first causal study to employ large-scale nationally representative
demographic survey data to identify the use of solid fuels as a contributor to under-five mortality,
we uncover three critical relationships. First, we show that the effects of polluting fuel use for
cooking on neonatal, infant, and under-five mortality rates are 0.030, 0.041, and 0.040,
respectively. Second, neonatal mortality is the highest in relatively small households with 5-6
members, where mothers share the dual burden of child-rearing and cooking. Third, our finding
suggests that it is mainly biomass fuels that drive the adverse impact of polluting fuel use on child
mortality in our context. This paper is the first to document that the effect of IAP on under-five
mortality is significantly heterogeneous by both a child’s age and gender and household size.

We conclude with some caveats and directions for future research. First, our analysis of the
causal impact of IAP on under-five mortality is based on an indirect indicator of IAP, i.e., the type
of primary cooking fuel. Using direct measures of IAP (CO and PM concentrations in homes)
recorded by 24-hour carbon monoxide readings might provide more accurate estimates due to less
measurement error but data of this sort is generally unavailable in the developing world. Second,
while we focus on the causal impact of IAP on infant mortality, IAP has adverse impacts on other
socio-economic and health outcomes. Future research on the impact of cooking fuel choice on the
productivity of children and adults - proxied by school attendance and labor market participation
respectively, can uncover other dimensions of the economic cost of using dirty cooking fuels.
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Figure 1: Mortality trends in different child’s age groups by fuel type in India

(a) Neonatal mortality (b) Post-neonatal mortality (c) Infant mortality
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Notes: Based on DHS datasets 1992-1993, 1998-2000, 2005-2006, and 2015-2016. In the medical literature, the measure of incidence proportion
(or cumulative incidence) is described as the fraction of children alive at the start of a period who die over that period (Greenland and Rothman,
2008; Centers for Disease Control and Prevention, 2006). The sample weights are applied to adjust the estimates according to the sampling design.
Notice that the incidence proportions of neonatal and post-neonatal mortality add up to infant mortality incidence because (i) these two preceding
and successive age groups fully make up the first year of life, and (ii) the measure of mortality incidence for all three different age groups have been

calculated using a common denominator (or total number of live births). Similarly, the incidence proportions of infant and child mortality add up to
under-five mortality incidence.

Figure 2: Share of households in the DHS relying on different types of fuels for cooking

Percent (%)

Type of Cooking Fuel
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Notes: The figure shows the share of households covered in four rounds of Demographic and Health Survey (DHS) using different types of fuels
for cooking in India over the period 1992-2016. The line charts depict the share of households using each type of cooking fuel for each round of

the survey, while the bar chart illustrates the share for all four rounds of the survey between 1992 and 2016 (the bars for clean fuels are filled with
pattern, whereas the bars for polluting fuels are in solid fill).
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Figure 3: India’s district-wise and satellite-based forest cover (2013)

+%

Notes: Based on satellite-based data on forest cover from the Planning Commission of India. The figure depicts the 2013 district-wise forest cover
(measured by the percentage of the geographical area covered by forests) in India. The forest cover includes all types of forests (different canopy
density classes) including very dense (lands with tree canopy density of 70% and above), moderately dense (lands with tree canopy density between
40% and 70%), and open forests (lands with tree canopy density between 10% and 40%). The scrub or degraded forest lands with canopy density of
less than 10% are not considered for calculating forest cover.
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Figure 4: Relationship between forest cover, cooking fuel choice, and under-five mortality

(a) Forest cover and polluting fuel use
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Notes: Based on DHS-4 (2015-2016) and the satellite-based data on forest cover data for 2013. The figure plots the relationship between forest
cover, cooking fuel choice, and under-five mortality at the district level for the five states of Jharkhand, Odisha, Assam, Chhattisgarh, and Madhya
Pradesh. The child and household-level indicators for cooking fuel choice and mortality are aggregated at the district level using survey weights.
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Figure 5: Age-specific infant mortality and ownership status of agricultural land across income
distribution in India

(a) Infant mortality (b) Ownership of agricultural land
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Notes: Based on DHS datasets 1992-1993, 1998-2000, 2005-2006, and 2015-2016. Panel (a) shows that the under-five mortality incidence proportion
is higher in lower-income households for household wealth quintiles, suggesting the probability of mortality decreases as a family becomes wealthier.

Panel (b) depicts the mean fraction of households that own land for agricultural purposes by dividing agricultural households similarly into quintiles
based on household wealth.

Figure 6: Survival analysis

(a) Proportion surviving (b) Kaplan—Meier survival estimate
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Notes: Based on DHS datasets 1992-1993, 1998-2000, 2005-2006, and 2015-2016. Panel (a) depicts the child’s proportion of surviving in different
age intervals by the choice of household’s cooking fuel from the life table using child-level data. Panel (b) presents the Kaplan-Meier estimates on
children’s survival over age for households using clean and polluting fuels for cooking.
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Table 1: Summary of related studies using different study designs

Study

Source of pollution

Health outcomes Context

Identification

Findings

Panel A. Experimental approach

Diaz et al. (2007)

Smith-Sivertsen
et al. (2009)

Hanna et al.
(2016)

Barron and
Torero (2017)

Open fire

Open fire

Traditional stove

Solid fuels

Women'’s eye Rural San
discomfort, Marcos,
headache, and Guatemala
back pain
Women’s Rural San
respiratory Marcos,
symptoms and Guatemala
lung functioning
Lung functioning Orissa,
and various health India

outcomes among
primary cooks
(women) and
children

Acute respiratory
infections among
children under six

El Salvador

RCT: Improved stoves
(planchas) program

RCT: Improved stoves
(planchas) program

RCT: Improved stove
program

RCT: Electrification
program

Panel B. Quasi-experimental approach

Symptoms of sore eyes,
headache, and back pain
reduced during the study period
of 18 months

Prevalence of wheezing
decreased, but the treatment has
no impact on other respiratory
symptoms (incl., cough, chronic
cough, phlegm, chronic phlegm,
wheeze, tightness in chest) and
lung functioning

No significant impact on health
outcomes such as sore eyes,
headache, wheeze, and others

Acute respiratory infections
(ARI) was 8-14 percentage
points lower among children
from encouraged households

Pitt et al. (2006)

Edwards and
Langpap (2012)*

Silwal and
McKay (2015)*

Imelda (2018,
2020)

Liu et al. (2020)

Present study

Hours spent cooking

Firewood use,
‘Whether mother
cooks

Firewood instead of
kerosene, LPG and
electricity

Kerosene and
firewood instead of
LPG

Non-solid vs. Solid
fuels

Biomass and other
polluting fuels

Adults’ and Rural
children’s Bangladesh
respiratory and Rural
symptoms India
Children’s Guatemala
respiratory health
Individual’s lung Indonesia
capacity damage
Infant mortality Indonesia
and child’s birth
weight
Elderly’s ability to Rural
handle daily living China
Under-five India
mortality by age
groups and

household size

IV: Gender-specific
hierarchies

IVs: Gas stove
ownership, mother’s
age

IV: Proximity to
nearest market

Staggered DID:
Fuel-switching
program

IV: Share of village
citizens who use clean
fuels

IVs: Forest cover,
agricultural land
ownership

10.8 pp. increase per 4 hours for
adults and some adverse impact
for children

Children living in households
that use more wood are more
likely to have symptoms of
respiratory infection

9.4% decrease in individual’s
lung capacity

Switching to LPG reduces infant
mortality and birth weight

5.35% and 9.50% increase in
activities of daily living and
instrumental activities of daily
living, respectively, due to non-
solid fuel use

The estimated effect on under-
five, infant, and neonatal
mortality rates are 0.040, 0.041,
and 0.030.

The estimated effect on neonatal
mortality rate in households
with 5-6 family members is
0.085.

Mortality effect is concentrated
on girls rather than boys

Notes: Studies with an asterisk (*) find weak justification in the tests to validate the exclusion restriction and exogeneity of their instruments.
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Table 2: Testing for positive 2SLS weights

Polluting fuel use ~ Owns agricultural land

(1) (2
Panel A. Continuous measure of forest cover
Forest cover 0.063 %% -0.033
(0.023) (0.035)
Owns agricultural land 0.057%%*%* 1.000
(0.003) —

Panel B. Binary measure of forest cover

Forest cover (above mean) 0.023%* -0.022
(0.009) (0.013)

Owns agricultural land 0.057%%*%* 1.000
(0.003) —

p-value: positive weights 1.000

p-value: negative weights 0.000

Notes: The table displays regressions of the variable listed in each column on the variable listed
on each row. All regressions control for baseline covariates. Standard errors clustered at the
district level are in parentheses. In panel A, forest cover is a continuous variable, i.e., district-
level percentage of forested area in the total geographical area of the region using satellite-based
data. In panel B, forest cover is expressed as a binary variable, specifically, taking a value of 1
if the district’s percentage of forest cover is above the mean and O otherwise. The first p-value
comes from a test of the null hypothesis that the 2SLS weights are all positive, and the second
comes from a test of the null hypothesis that at least one weight is negative.
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Table 3: Summary statistics

Mean SD Min Max  Observations

Infant mortality (% total live births)

Under-five (0-5 years) 0.054 0.225 0 1 360850

Child (1-5 years) 0.005 0.070 0 1 360850

Infant (0-1 year) 0.049 0.215 0 1 360850

Post-neonatal (28 days-1 year) 0.017 0.129 0 1 360850

Neonatal (0-28 days) 0.032 0.176 0 1 360850
Type of cooking fuel (clean) 0.254 0.435 0 1 345932
Place of residence (urban) 0.256 0.436 0 1 360850
Number of household members 6.941 3.378 1 46 360850
Child’s gender (female) 0.480 0.500 0 1 360850
Child’s breastfeeding status (ever) 0.652 0.476 0 1 360850
Household wealth (wealth index)

High 0.145 0.352 0 1 360850

Middle 0.384 0.486 0 1 360850

Low 0.472 0.499 0 1 360850
Place where food is cooked

In same room as they live in 0.368 0.482 0 1 245108

In separate kitchen inside the house 0.437 0.496 0 1 245108

In a separate building 0.099 0.299 0 1 245108

Outdoors 0.097 0.296 0 1 245108
Type of house

Pucca 0.403 0.490 0 1 349894

Semi-pucca 0.395 0.489 0 1 349894

Kachha 0.202 0.401 0 1 349894
Mother’s age (years)

40-49 0.023 0.149 0 1 360850

<20 0.049 0.216 0 1 360850

20-29 0.698 0.459 0 1 360850

30-39 0.231 0.421 0 1 360850
Mother’s education

Secondary/Higher 0.452 0.498 0 1 360653

Primary 0.145 0.352 0 1 360653

No education 0.403 0.491 0 1 360653
Adult mortality rate (%, district-wise)

15-49 years old 0.010 0.003 0.000 0.027 301114

50+ years old 0.085 0.015 0.023 0.130 301114

Notes: The table summarizes the household and individual characteristics of respondents from the three rounds of DHS (1992-
1993, 1998-2000, and 2015-2016) used in the regressions. The unit of observation is the child, and sampling weights are applied.
Neonatal = first 28 days after birth, Post-neonatal = period between the first 28 days after birth and end of the first year of life,
Infant = first year of birth, and Child = period from age of one to five. Mean under-five mortality (the sum of mean child and
infant mortality) exceeds any individual components that are subsets of a total number of incidents in the first five years of life.
Similarly, infant mortality equals the sum of mean post-neonatal and neonatal mortality because these two preceding age groups
make up the infant period. Units are % household unless otherwise specified. The type of cooking fuel recorded in the survey as
“no food cooked in house”, “other”, and “not a de jure resident” has been coded as missing observations.
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Table 4: Summary statistics of infant mortality and fuel choice (by states)

Panel A. Infant mortality (fraction)

Under-five Child Infant Post-neonatal Neonatal
States (0-5 years) (1-5 years) (0-1 year) (28 days-1 year) (0-28 days) Obs.
Mean SD Mean SD Mean SD Mean SD Mean SD

Uttar Pradesh 0.077  0.267 0.007 0.084 0.070  0.255 0.025 0.155 0.045 0.208 56090
Madhya Pradesh  0.070 0.255 0.008 0.089 0.062 0.241 0.023  0.149 0.039 0.194 31171

Assam 0.062 0.242 0.008 0.091 0.054 0.226 0.020 0.141 0.033 0.180 14015
Bihar 0.061 0.239 0.005 0.073 0.055 0.228 0.018 0.132 0.037 0.190 32580
Chhattisgarh 0.060 0.238 0.006 0.075 0.054 0.227 0.015 0.123 0.039 0.194 9826

Rajasthan 0.058 0.234 0.005 0.070 0.053 0.225 0.021  0.143 0.033 0.178 24964
Odisha 0.058 0.233 0.004 0.064 0.054 0.225 0.021  0.143 0.033 0.178 16192
Delhi 0.055 0.228 0.004  0.065 0.051 0.219 0.022  0.146 0.029 0.167 3700

Jharkhand 0.050 0.218 0.004 0.062 0.046 0.210 0.014 0.119 0.032  0.175 13427

Andhra Pradesh  0.049 0.216 0.003  0.054 0.046 0.210 0.017  0.130 0.029 0.168 5515

All States/UTs 0.054 0.225 0.005 0.070 0.049 0.215 0.017 0.129 0.032 0.176 360850

Panel B. Type of cooking fuel (fraction)

Mean
States Polluting Clean Sb Obs.
Bihar 0.906 0.094 0.292 31086
Jharkhand 0.896 0.104 0.306 12712
Meghalaya 0.888 0.112 0.315 6247
Odisha 0.885 0.115 0.319 15487
Assam 0.867 0.133 0.339 13860
Chhattisgarh 0.853 0.147 0.354 9280
West Bengal 0.844 0.156 0.363 9033
Nagaland 0.828 0.172 0.377 5646
Tripura 0.825 0.175 0.380 2500
Madhya Pradesh 0.813 0.187 0.390 29836
All States/Uts 0.746 0.254 0.435 345932

Notes: The table summarizes the infant mortality of five different age groups (outcome variables, top panel) and the type of cooking fuel (key
explanatory variable, bottom panel) by state recorded in three rounds of DHS (1992-1993, 1998-2000, and 2015-2016) used in the regressions. The
sampling weights are applied. All 35 regions of India (29 states and six union territories—UTs) are considered.
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Table 5: Probit: Marginal impact of cooking fuel choice on under-five mortality

Dependent variable: Child mortality for various age-groups

(D 2 3)
Panel A. Under-five (0-5 years)
Polluting fuel for cooking 0.023#%* 0.008%*** 0.008%***
(0.001) (0.001) (0.001)
Observations 345,932 221,913 221,913
Probit log-likelihood -69,858 -35,657 -35,647

Panel B. Child (1-5 years)

Polluting fuel for cooking 0.0040%%* 0.0008%** 0.0008%**
(0.0004) (0.0004) (0.0004)

Observations 343,593 219,861 219,861

Probit log-likelihood -10,264 -3,923 -3,923

Panel C. Infant (0-1 year)

Polluting fuel for cooking 0.0207%** 0.007%** 0.007%**
(0.001) (0.001) (0.001)

Observations 345,932 221,913 221,913

Probit log-likelihood -65,227 -33,909 -33,901

Panel D. Post-neonatal (28 days-1 year)

Polluting fuel for cooking 0.009%* 0.001 0.001
(0.001) (0.001) (0.001)

Observations 345,932 221,518 221,518

Probit log-likelihood -293,29 -13,840 -13,839

Panel E. Neonatal (0-28 days)

Polluting fuel for cooking 0.01 1%** 0.006%** 0.006%**
(0.001) (0.001) (0.001)

Observations 345,932 221,913 221,913
Probit log-likelihood -46,777 -25,420 25411
Year FE Yes Yes No
State FE Yes Yes No
Demographic controls No Yes Yes
State x Year FE No No Yes

Notes: Each column reports AMEs for probit regression where the key explanatory variable is polluting fuel for cooking.
The dependent variable is child mortality for different age groups: under-five, child, infant, post-neonatal, and neonatal in
panels A through E, respectively. The year fixed effects in Columns (2) and (3) include dummies for two years of interviews
(2015 and 2016). The state fixed effects include dummies for 36 states. The demographic controls include household
characteristics: place of residence, household wealth, number of household members, place where food is cooked, and
type of house; mother characteristics: age and educational attainment; infant characteristics: gender and breastfeeding
status; and district characteristics: age-specific adult mortality rates. The unit of observation is the child. Standard errors
of the probit regressions are clustered at the PSU level, and standard errors of the AMEs in parentheses are calculated by
applying the Delta method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 6: Effect of cooking fuel choice on infant mortality from IV regressions
(IV = Agricultural land ownership)

15t stage 2nd gtage
M (@) 3) “) &) (6)
Polluting Under-five Child Infant Post-neonatal Neonatal
fuel use (0-5 years) (1-5years) (0-1year) (28 days-1year) (0-28 days)
Polluting fuel for cooking 0.047#**  0.001 0.046%** 0.010 0.036%+**
(0.018) (0.004) (0.017) (0.010) (0.014)
Owns agricultural land 0.057%**
(0.002)
Observations 221913 221913 221913 221913 221913 221913
R? 0.53 0.02 0.00 0.02 0.01 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o = 5%) 772.33
Critical value 2SLS (7 = 10%) 23.11

Notes: All specifications contain an unreported vector of demographic controls and a constant term. The demographic controls include household
characteristics: place of residence, household wealth, number of household members, place where food is cooked, and type of house; mother
characteristics: age and educational attainment; infant characteristics: gender and breastfeeding status; and district characteristics: age-specific
adult mortality rates. The state-by-year fixed effects are also controlled in every specification. OLS regression does not drop the state FEs that
perfectly explain the child and post-natal mortality incidences, and thus the number of observations is the same across five IV regressions. The
unit of observation is the child. Standard errors in parentheses are clustered at the primary sampling unit (PSU) level. Significance: *p < 0.10,

*#p < 0.05, and ***p < 0.01.
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Table 7: Effect of cooking fuel choice on infant mortality from IV regressions
(IVs = Forest cover and agricultural land ownership)

15t stage 2nd gtage
1 2 3) “ (%) (6)
Polluting/Biomass Under-five Child Infant Post-neonatal Neonatal
fuel use (0-5 years) (1-5 years) (0-1year) (28 days-1year) (0-28 days)
Panel A. Indoor air pollution = Polluting fuel
Polluting fuel for cooking 0.040+*[=x 0,001 0.041+[=x 0,011 0.0307%x]
(0.020) (0.005) (0.019) (0.011) (0.015)
[0.018] [0.005] [0.017] [0.010] [0.014]
Forest cover 0.065%*%*
(0.022)
Owns agricultural land 0.054#%%
(0.003)
Observations 194254 194254 194254 194254 194254 194254
R? 0.53 0.02 0.00 0.02 0.01 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o = 5%) 54.12
Critical value 2SLS (7 = 10%) 17.41
Hansen J statistic 1.70 0.33 2.18 0.40 2.29
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen .J statistic 0.19 0.57 0.14 0.53 0.13

Panel B. Indoor air pollution = Biomass fuel

Biomass fuels for cooking 0.037+0=1  -0.001 0.037+xl=xl 0,011 0.026%[x
(0.019) (0.005) (0.018) (0.010) (0.014)
[0.015] [0.004] [0.015] [0.008] [0.012]
Forest cover 0.067%#*
(0.022)
Owns agricultural land 0.058*#%*
(0.003)
Observations 189384 189384 189384 189384 189384 189384
R? 0.55 0.02 0.00 0.02 0.01 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (v = 5%) 57.82
Critical value 2SLS (7 = 10%) 17.74
Hansen J statistic 1.74 0.58 2.40 0.44 2.54
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen J statistic 0.19 0.45 0.12 0.51 0.11

Notes: The first column reports the result from the first-stage regression of our IV (2SLS) regression using DHS-4 data. The dependent variable
is a binary variable of whether fuel choice: polluting fuel (top panel) and biomass fuel (bottom panel). The effective F'-statistic on IVs—2013
district-wise forest cover calculated as a percentage of forested area in the total geographical area of the region using satellite-based data and an
indicator variable for household’s agricultural land ownership—verifies that the instruments generate a plausible variation in polluting (top panel)
and biomass (bottom panel) fuels for cooking. Columns (2)—(6) report results from the estimation of equation (1) using IV regression with different
dependent variables and similar specifications where the key explanatory variable is the fitted value of polluting fuel (top panel) or biomass fuel
(bottom panel) from the first-stage estimation. The number of observations decreases in the bottom panel as we drop non-biomass polluting fuels
from the sample to contrast the effect of using polluting biomass fuels to that of using polluting fuels. The Hansen’s J-statistic suggests that
the excluded IVs are exogenous. All specifications contain an unreported vector of demographic controls and a constant term. The demographic
controls include household characteristics: place of residence, household wealth, number of household members, place where food is cooked,
and type of house; mother characteristics: age and educational attainment; infant characteristics: gender and breastfeeding status; and district
characteristics: age-specific adult mortality rates. The state-by-year fixed effects are also controlled in every specification. Unit of observation:
child. Heteroskedasticity-robust standard errors clustered by districts are in parentheses. Robust to multiple-LATEs and heteroscedasticity standard
errors (Lee, 2018) of the key regressor and statistical significance based on them are in brackets. The statistical significance of the key regressors is
the same for all regressions when the standard errors are clustered by PSUs. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 8: Heterogeneous mortality effects of IAP by child’s age and household size

15t stage 27 stage
(1) 2) (3) “ &) (©)
Polluting Under-five Child Infant Post-neonatal Neonatal
fuel use
Panel A. Number of household members = [1-4]
Polluting fuel for cooking 0.221 %% 0.011 0.210%%* 0.0827%%* 0.127%*
(0.066) (0.017) (0.064) (0.035) (0.051)
Forest cover 0.082%**
(0.025)
Owns agricultural land 0.035%**
(0.004)
Observations 48777 48777 48777 48777 48777 48777
R? 0.58 -0.00 0.00 -0.00 -0.01 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o = 5%) 22.87
Critical value 2SLS (1 = 10%) 14.65
Hansen J statistic 5.08 0.58 6.49 5.46 2.98
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen J statistic 0.02 0.44 0.01 0.02 0.08
Panel B. Number of household members = [5-8]
Polluting fuel for cooking 0.059%* 0.002 0.056%* 0.008 0.048%**
(0.023) (0.006) (0.022) (0.012) (0.018)
Forest cover 0.070%**
(0.022)
Owns agricultural land 0.054%**
(0.003)
Observations 109747 109747 109747 109747 109747 109747
R? 0.53 0.01 0.00 0.01 0.00 0.00
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o« = 5%) 48.60
Critical value 2SLS (1 = 10%) 16.57
Hansen J statistic 1.96 0.03 2.12 0.31 2.20
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen J statistic 0.16 0.86 0.15 0.58 0.14
Panel C. Number of household members = [9-12]
Polluting fuel for cooking -0.023 -0.001 -0.022 -0.020 -0.002
(0.036) (0.008) (0.035) (0.018) (0.030)
Forest cover 0.021
(0.032)
Owns agricultural land 0.069%%**
(0.007)
Observations 28278 28278 28278 28278 28278 28278
R? 0.52 0.01 0.00 0.01 0.00 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o« = 5%) 37.02
Critical value 2SLS (7 = 10%) 10.41
Hansen J statistic 0.06 0.40 0.01 0.92 0.62
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen .J statistic 0.80 0.53 0.92 0.34 0.43

Notes: The table presents heterogeneous treatment effects of IAP on infant mortality by both child’s age and household size using three subpopulations
of households with fewer than twelve members covered in DHS-4 data. Panel A—C considers each of the three subsamples in an order of 1-4 to 9-12
members. The first column provides results from the first-stage regressions of the IV (2SLS) regressions, where the dependent variable is a binary
variable of whether fuel choice: polluting fuel. Columns (2)—(6) report results from the estimation of equation (1) using I'V regression with different
dependent variables and similar specifications. The outcome variable in an IV regression is a binary variable of infant mortality for each of the
five different age groups. All specifications contain an unreported vector of demographic controls, state-by-year fixed effects, and a constant term.
Heteroskedasticity-robust standard errors clustered by districts are in parentheses. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 9: Heterogeneous mortality effects of IAP by child’s age and gender

15t stage 274 stage
(1) @) 3) “ ) (6)
Polluting Under-five  Child Infant  Post-neonatal Neonatal
fuel use
Panel A. Boys
Polluting fuel for cooking 0.009 -0.006 0.015 -0.005 0.021
(0.027) (0.006) (0.026) (0.014) (0.022)
Forest cover 0.058%*
(0.023)
Owns agricultural land 0.058#**
(0.003)
Observations 101309 101309 101309 101309 101309 101309
R? 0.54 0.02 0.00 0.02 0.01 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o = 5%) 55.64
Critical value 2SLS (7 = 10%) 16.66
Hansen J statistic 1.17 1.18 1.84 0.13 1.92
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen .J statistic 0.28 0.28 0.17 0.72 0.17
Panel B. Girls
Polluting fuel for cooking 0.078*** 0.005 0.073***  (0.032%* 0.041**
(0.026) (0.008) (0.025) (0.016) (0.020)
Forest cover 0.072%**
(0.022)
Owns agricultural land 0.050%#**
(0.003)
Observations 92945 92945 92945 92945 92945 92945
R? 0.53 0.01 0.00 0.01 0.00 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o = 5%) 45.27
Critical value 2SLS (7 = 10%) 16.29
Hansen .J statistic 1.11 0.17 1.02 0.55 0.48
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen J statistic 0.29 0.68 0.31 0.46 0.49

Notes: The table presents heterogeneous treatment effects of IAP on infant mortality by both child’s age and gender using the DHS-4 data. Panel
A and B are respectively based on a subsample of boys and girls. All specifications contain an unreported vector of demographic controls, state-by-
year fixed effects, and a constant term. Heteroskedasticity-robust standard errors clustered by districts are in parentheses. Significance: *p < 0.10,
**p < 0.05, and ***p < 0.01.

45



Table 10: Heterogeneous mortality effects of IAP by child’s age and status of male siblings

15t stage 274 stage

ey 2 3) “ ) (6)
Polluting Under-five  Child Infant  Post-neonatal Neonatal
fuel use

Panel A. Lives with male siblings

Polluting fuel for cooking 0.094* 0.000 0.093%* 0.010 0.083*
(0.053) (0.013) (0.051) (0.030) (0.044)
Forest cover 0.054**
(0.025)
Owns agricultural land 0.046%**
(0.004)
Observations 50366 50366 50366 50366 50366 50366
R? 0.49 0.02 0.00 0.02 0.01 0.01
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o = 5%) 34.49
Critical value 2SLS (7 = 10%) 13.25
Hansen J statistic 2.38 0.64 1.97 0.06 2.21
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen .J statistic 0.12 0.42 0.16 0.81 0.14

Panel B. Lives without any male siblings

Polluting fuel for cooking 0.047%*  -0.000  0.047***  0.018* 0.029*
(0.019) (0.005) (0.018) (0.010) (0.015)

Forest cover 0.068***
(0.023)
Owns agricultural land 0.057#%*
(0.003)
Observations 143888 143888 143888 143888 143888 143888
R? 0.54 0.02 0.00 0.02 0.01 0.02
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o = 5%) 54.56
Critical value 2SLS (7 = 10%) 17.61
Hansen .J statistic 1.83 1.25 2.79 1.00 2.02
Degree of overidentification 1.00 1.00 1.00 1.00 1.00
p-value of Hansen J statistic 0.18 0.26 0.09 0.32 0.16

Notes: The table presents heterogeneous treatment effects of IAP on infant mortality by both child’s age and the status of male siblings using
the DHS-4 data. Panel A and B are respectively based on a subsample of children with and without male siblings. All specifications contain an
unreported vector of demographic controls, state-by-year fixed effects, and a constant term. Heteroskedasticity-robust standard errors clustered by
districts are in parentheses. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 11: Regression results from the zero-first-stage test

&)

IV = Agricultural land ownership

(@)
IVs = Agricultural land ownership
and forest cover

Effect of instrument(s) on polluting fuel use for cooking

Panel (a). Reduced form (full sample)

Owns agricultural land 0.1070%%*%* 0.1050%*%*
(0.0042) (0.0044)
Forest cover 0.0899%**
(0.0232)
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o« = 5%) 636.41 177.53
Critical value 2SLS (7 = 10%) 23.11 12.01
Observations 220,572 194,254
Panel (b). Direct effect (zero-first-stage group)
Owns agricultural land 0.0047 -0.0053
(0.0145) (0.0146)
Forest cover 0.0619
(0.0460)
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o« = 5%) 0.10 1.21
Critical value 2SLS (7 = 10%) 23.11 9.92
Observations 4,906 4,287
Panel (c). Direct effect (remaining sample)
Owns agricultural land 0.1048%*%#%* 0.1028*%*%*
(0.0042) (0.0044)
Forest cover 0.0895%***
(0.0229)
Montiel Olea-Pflueger weak IV test
Effective F-statistic (o« = 5%) 613.81 175.91
Critical value 2SLS (7 = 10%) 23.11 11.66
Observations 215,666 189,967

Effect of instrument(s) on under-five mortality

Panel (d). Reduced form (full sample)

Owns agricultural land 0.0020* 0.0021%*
(0.0010) (0.0011)

Forest cover -0.0021
(0.0032)

Observations 220,572 194,254

Panel (e). Direct effect (zero-first-stage group)

Owns agricultural land -0.0043 -0.0098
(0.0106) (0.0117)
Forest cover 0.0275
(0.0280)
Observations 4,906 4,287

Panel (f). Direct effect (remaining sample)

Owns agricultural land 0.0027%* 0.0028%**
(0.0010) (0.0011)
Forest cover -0.0027
(0.0032)
Observations 215,666 189,967

Notes: All specifications include an unreported constant term, state-by-year fixed effects, and baseline demographic controls except for urban/rural
dummy. Heteroskedasticity-robust standard errors clustered by districts are in parentheses. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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