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A Data Appendix
This appendix first describes the four main datasets used for measuring the key variables and con-
ducting the empirical analysis. Then I discuss the construction and approximation of some vari-
ables, including capital stock, wage, and education.

A.1 Establishment Data

Since the key outcome in this paper is wage markdowns measured using a production function ap-
proach, the primary dataset in this paper is the production data. The firm-level production data
come from the IAB Establishment Panel (IAB-BP), which covers a large representative sample of
establishments in German manufacturing. The longitudinal structure of the IAB-BP data enables
me to use the control function method, which uses lagged information for identification to estimate
the production function and then wage markdowns. The IAB-BP data includes comprehensive in-
formation necessary for production function estimation, such as annual revenue, number of workers
or headcount49, purchase of intermediate materials, and investments.

A unique feature of the IAB-BP data is that it is the first data with direct information on robot
use. Other studies mostly use indirect or proxymeasures of robot adoption such as imports of robots
and automation technologies (Humlum, 2019; Acemoglu et al., 2020; Barth et al., 2020; Bonfigli-
oli et al., 2020; Domini et al., 2021), ICT investment or usage (Kirov and Traina, 2021; Mengano,
2023), and investment in and costs of automation technologies (Aghion et al., 2020; Bessen et al.,
forthcoming). An exception to this unique feature of my data on automation is the Spanish admin-
istrative data, used by Koch et al. (2021), which reports direct information on robots but only on the
extensive margin. But the IAB BP survey data also provide information on the firm’s robot use on
the intensive margin (number of robots used by the firm), providing greater flexibility to analyze the
firm’s robot adoption in comparison with aggregate-level information on robots and robot exposure.

For the establishment data, I also extract the district (or kreis) where the plant is located from
the Establishment History Panel (BHP), which contains more general information on the industry,
location, and total employment for each establishment. Using the unique establishment identifier,
I merge this dataset with the IAB BP and the matched data to import the district information. So,
regions in this paper will be at the district level unless otherwise noted. To estimate the production
function and thus quantify markdown using the production approach, I approximate the firm’s cap-
ital stock, and the details on the procedure are provided below.

49Some studies such as De Loecker et al. (2016), Yeh et al. (2022), Bau and Matray (2023), and Lochner and Schulz
(2024) use the total wage bill as a proxy measure of labor; however, compensation of employees is less representative of
physical labor inputs than labor headcounts at the firm with wage-setting power where workers are underpaid and thus
the labor cost underestimates the labor inputs and introduces measurement error in markdown estimates. Although the
estimated effect of automation threat on markdown will be consistent even in the presence of this measurement error
in the dependent variable, which will be captured in the error term, the measurement error might erase the non-zero
causal effect. Hence, it is ideal to use headcounts as labor inputs in estimating production function and markdown
under the relaxation of perfectly competitive labor market assumption.
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The IAB establishment panel survey began in 1993 with only West German plants included,
and plants from East Germany have been covered since 1996 (https://iab.de/en/the-iab/surveys/the-
iab-establishment-panel/). Therefore, I consider the sample of firm-level data spanning the periods
1996-2018 to construct the nationally representative estimate ofmarkdowns and estimate the impact
automation threats on labor market power in Germany.

A.2 Matched Employer-Employee Data

I use the longitudinal version of matched employer-employee data (LIAB) mainly to construct the
control variables, normalize the shock variables, and perform analysis with heterogeneous workers.
The LIAB records employment trajectories for each employee whoworked at one of the plants in the
establishment sample for at least one day over the period. The worker’s information in the matched
data contains the employment history of each employee with social security records. Specifically, I
use data from the Employee History (Beschäftigtenhistorik—BeH). The information on employees
includes variables such as daily wage50 and detailed occupation classifications at the 5-digit level
from 1975 to 2019.

The establishment codes in the LIAB match those in the IAB-BP. Thus, for example, I calculate
shares of female and foreign workers in the establishment using the LIAB data and merge it with
the IAB-BP data to construct the demographic controls included in the regressions. For my analysis
allowing for heterogeneous workers, I allocate the plant’s total labor cost recorded in the IAB-BP
data to workers performing different tasks using the share of each worker’s annual earnings in the
establishment recorded in the LIAB data. A worker’s annual earnings is a multiplication of imputed
daily wage and the number of days worked in a given year.51

A.3 Worker-Level Job Tasks

In this paper, I highlight worker heterogeneity based on the risks of displacement from labor-saving
automation technologies, including differences in tasks performed by the worker and the worker’s
skill level measured by educational attainment. I focus on worker heterogeneity by task differ-
ences since recent technological change is more biased towards routine tasks. I use three waves of
worker-level representative cross-sectional data from the Federal Institute for Vocational Training
and Training (BIBB)–so-called “BIBB/BAuA Employment Surveys (2006, 2012, and 2018)”–for
my analysis in which workers differ by their job tasks performed at their workplaces. This data
contains information on occupational skill requirements or qualifications and working conditions
in Germany for around 20,000 individuals in the active labor force. Although there are existing task

50Following the literature, I impute workers’ top-coded wage information and educational attainment recorded in the
German administrative data. I provide details on these imputation procedures below.

51The LIAB records parallel episodes if an individual simultaneously does multiple jobs. I restrict the data to the
highest-paying job of an employee as the main episode following the literature, e.g., Dauth et al. (2021).
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intensity measures for occupations in other countries like the U.S. (Autor and Dorn, 2013) and the
U.S. and Germany are similarly advanced countries, I used this worker-level data from Germany to
accurately measure task contents for occupations in the German context because occupational task
contents can differ across different countries (Caunedo et al., 2023).

Using the BIBB/BAuA Employment Surveys, I categorize activities that employees perform at
the workplace into routine, nonroutine manual, and nonroutine cognitive tasks to group workers
into categories that differ by their exposure to automation technologies. The BIBB Employment
Survey has been collected every 6-7 years since 1979, but I use three waves that employ the Ger-
man Classification of Occupations 2010 (KldB 2010). The earlier surveys–so-called “BIBB/IAB
Employment Surveys (1985-1986, 1991-1992, and 1998-1999)” employ the KldB 1998. Using the
KldB 2010 occupation classifications, I merge the task intensity measures aggregated at the 3-digit
occupation level in the BIBB/BAuA surveys to the LIAB data by occupation. For years before 2006,
I used the fixed task intensity measure for 2006.

A.4 Industry-Level Robots Stock

The main limitation of information on the firm’s robot adoption in the IAB-BP dataset is that a
retrospective question was asked only once in 2019 about the firm’s use of robots over the five
years preceding the survey year from 2014 to 2018. It provides relatively restrictive periods. So, I
use industry-year panel data on the stock of industrial robots in 50 countries, including Germany,
reported by the International Federation of Robotics (IFR) since 1993 as the primary measure of
automation that spans for more periods. Graetz and Michaels (2017, 2018) introduced the use of
IFR’s robots stock data, which have been later used by Acemoglu and Restrepo (2020) for the U.S.
and by Dauth et al. (2021) for Germany. The data come from annual surveys of robot suppliers
and cover 90% of the world. The robot stock is disaggregated for 20 manufacturing industries.52

I predict the local labor market exposure to robots based on the industry-level robots stock using
employment weights, and the annual change in the number of robots is normalized by workforce
size. In doing these, I use employment counts from the BEH recorded in the matched employer-
employee data (LIAB). Section 4.1 discusses the construction of our primary measure of local labor
market exposure to robots in more detail, particularly in equation (5).

52Following Graetz and Michaels (2017, 2018) and Dauth et al. (2021), I drop the IFR industries: all other manufac-
turing, all other non-manufacturing, and unspecified. It does not significantly affect the representativeness of the data
as these three groups of industries only account for 5% of the total stock of robots in Germany. I also ignore agricul-
ture, mining, electricity/gas/water supply, construction, and education to be consistent with my markdown estimation,
performed for only manufacturing plants. The establishments in non-manufacturing industrial sectors reported in the
IAB-BP data are too few. Thus, the estimated markdowns are noisy. I exclude non-industrial sectors in the markdown
estimation and in this paper mainly because information on production prices is not available for those industries. So,
I cannot deflate sales revenue, capital, and intermediate materials for non-industrial plants.
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A.5 Construction and Approximation of Some Key Variables

I first describes how I approximate the capital stock in the IAB Establishment Panel. I then explain
how I impute education records and top-coded wage information in the worker-level German ad-
ministrative data.

Capital Stock Approximation. I use a perpetual inventory method following Mueller (2008,
2017) to compute the stock of capital, one of the key ingredients in the production function estima-
tion. One of the key inputs in using the perpetual inventory approach is industry-specific average
economic lives of capital goods, an inverse of depreciation rate, which is obtained from Mueller
(2017) at the time-consistent 2-digit industry level for the periods 1993-2014. I merge this in-
formation with EP data at the 2-digit industry level, which I generate from the 3-digit industry
classification provided in the EP data.53 Given that the economic lives information is provided up
to 2014 while my analysis spans until 2018, I extrapolate economic lives for four years between
2014-2018 by (i) keeping it constant and the 2014 level and (ii) using 3-year moving average.54

Another issue with approximating capital stock is the starting value of the capital stock.

Also Mueller (2008) proposes two approaches to compute the time series of capital stock using
either the average replacement investments over the whole sample period (KT) or the first three
years (K3) for each firm. I define these two types of capital stock series, following the procedure,
and which version of capital stock to use depends on the analysis. The latter performs better than
the former when the capital stock has a time trend, as it uses the short-term average as a starting
point. However, due to noisy investment data, the capital stock generated in this way, K3, is likely
to be misleading. However, the perpetual inventory routine slowly corrects the K3. So, K3might be
less appropriate when using between-firm information and OLS regression. However, it might be
more suitable for estimators that use only within-firm information using the GMM method. Since
the ACF method of production function estimation uses GMM to estimate production function pa-
rameters, I primarily use the capital stock K3 in my analysis despite fewer observations than KT.55

Imputation of Wages. I observe the nominal daily wage of each worker registered for social
security purposes at the firm. Since the wage data comes from social security records, it is generally
highly reliable. However, a common challenge of the wage data from the Social Security notifica-
tions is that the wage information is recorded only until the Social Security contribution assessment
ceiling. If a worker’s wage exceeds this upper earnings limit, this value will be entered as her wage,
which differs by year and location.56 Although only about 5% of the observations are subject to

53Federal employment agency reports the time-consistent classification of economic activities at different aggrega-
tion levels.

54Since the average economic lives have been substantially stable over the years from 1993 to 2014 with small
variance, an extrapolation for four years is not expected to affect the results in any economically meaningful way. Also,
there is no record of any events that might have changed the dynamic pattern of the average economic lives of capital
goods. The results from production function estimation using these two different capital stocks are extremely similar.

55I also use KT in my production function estimation as a robustness check and find that estimates on production
function parameters remain the same.

56The nominal wages and the assessment ceilings are deflated by the consumer price index from the Federal Statistical
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this top-coding procedure, this censorship affects some groups of workers, e.g., high-skilled male
workers above certain ages in regular full-time employment. To address this censoring problem, I
use a two-step imputation procedure proposed by Dustmann et al. (2009), widely employed in the
literature, e.g., by Card et al. (2013). First, I run a series of Tobit wage regressions—fit separately
by year, East and West Germany, and three educational groups—on worker characteristics, includ-
ing gender, age range, and tenure.

Imputation of Educational Attainments. I use the information on workers’ educational at-
tainment to impute the right-censored wages. However, the highest level of workers’ educational
attainment in the German administrative data is inconsistent over time. For example, the educa-
tional attainment of an individual with a university degree is recorded as an apprenticeship even if
the individual has a university degree but did an apprenticeship later on. Following Fitzenberger
et al. (2005), I correct such inconsistent developments in educational attainment.

Office to calculate the real wages.
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B Robustness of the Relationship between Actual Robot
Adoption and Robot Exposure Shock

To check the robustness of the relationship between actual robot adoption and robot exposure doc-
umented in Section 4.5, this appendix first examines the relationship between actual robot adoption
and robot exposure shock in the automotive industry (Table B.1).

Table B.1: Relationship between Actual Robot Adoption and Robot Exposure Shock in
Automotive Industry

Dependent variable: Actual robot adoption

(1) (2) (3)
Panel A. Robots in automotive per 1000 workers

External exposure to robots in automotive 0.214 1.079 1.138
(0.170) (1.712) (1.648)

N 1671 1667 1657
R2 0.03 0.44 0.47

Panel B. ∆Robots in automotive per 1000 workers

∆External exposure to robots in automotive -0.030 -0.141 -0.257
(0.075) (0.092) (0.205)

N 1330 1323 1315
R2 0.03 0.39 0.43

Year fixed effects X X
State fixed effects X
District fixed effects X X
State-by-Year fixed effects X

Notes: The table presents the results from OLS regressions estimating the relationship between actual
robot adoption in Germany and average robot exposure in the automotive industry in other high-income
European countries at the local labor market region level. The sample at the level in panel A covers periods
between 2014 and 2018, while the sample in panel B for annual changes covers 2015-2018. The actual
robot adoption is measured by aggregating the number of robots adopted by the firm in the automotive
industry at the district level using sampling weights provided in the IAB Establishment Panel data and
expressed as per 1,000 workers. The robot exposure shock into the local labor market regions or districts
is measured by the robots stock in the automotive industry in six other European countries (Spain, France,
Italy, Norway, Sweden, and UK) “predicted” to the district using employment shares and expressed as per
1,000 workers. The actual robot adoption and robot exposure are normalized by the number of workers
in the previous period. In panel A, the relationship was estimated at the level, while panel B shows the
relationship between the annual changes. Standard errors clustered by districts are in parentheses.

Second, I estimate the relationship between actual robot adoption and robot exposure shock for all
industries and automobile industries separately for East and West Germany (Tables B.2 and B.3).
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Table B.2: Relationship between Actual Robot Adoption and Robot Exposure Shock in
East Germany

Dependent variable: Actual robot adoption

All industries Automobile industry

(1) (2) (3) (4) (5) (6)
Panel A. Robots per 1000 workers

Robot exposure shock 0.213 0.492 0.373 2.302 4.253 4.605
(0.087) (0.844) (0.867) (3.448) (6.332) (6.315)

N 356 356 356 356 356 356
R2 0.14 0.49 0.53 0.05 0.51 0.54

Panel B. ∆Robots per 1000 workers

∆Robot exposure shock 0.209 1.166 1.130 6.724 2.904 7.905
(0.858) (1.737) (1.720) (7.407) (3.614) (5.873)

N 283 282 282 283 282 282
R2 0.05 0.32 0.34 0.04 0.34 0.39

Year fixed effects X X X X
State fixed effects X X
District fixed effects X X X X
State-by-Year fixed effects X X

Notes: The table presents the results from OLS regressions estimating the relationship between actual
robot adoption and average robot exposure in other high-income European countries at the local labor
market region level in East Germany for industrial robots in all industries (left sub-panel) and automobile
industry (right sub-panel). The sample at the level in panel A covers periods between 2014 and 2018, while
the sample in panel B for annual changes covers 2015-2018. The actual robot adoption is measured by
aggregating the number of robots adopted by the firm at the district level using sampling weights provided
in the IAB Establishment Panel data and expressed as per 1,000 workers. The robot exposure shock into
the local labor market regions or districts is measured by the robots stock at the industry level in six
other European countries (Spain, France, Italy, Norway, Sweden, and UK) “predicted” to districts using
employment shares and expressed as per 1,000 workers. The actual robot adoption and robot exposure
shock are normalized by the number of workers in the previous period. The relationship in panel A was
estimated at the level, while panel B shows the relationship between the annual changes. Standard errors
clustered by districts are in parentheses.
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Table B.3: Relationship between Actual Robot Adoption and Robot Exposure Shock in West
Germany

Dependent variable: Actual robot adoption

All industries Automobile industry

(1) (2) (3) (4) (5) (6)
Panel A. Robots per 1000 workers

Robot exposure shock -0.014 -0.001 0.007 0.136 -0.221 -0.279
(0.015) (0.089) (0.091) (0.125) (0.357) (0.348)

N 1315 1311 1301 1315 1311 1301
R2 0.03 0.55 0.56 0.02 0.35 0.39

Panel B. ∆Robots per 1000 workers

∆Robot exposure shock -0.249 -0.234 -0.374 -0.055 -0.154 -0.295
(0.152) (0.224) (0.235) (0.079) (0.107) (0.207)

N 1047 1041 1033 1047 1041 1033
R2 0.02 0.50 0.51 0.01 0.43 0.46

Year fixed effects X X X X
State fixed effects X X
District fixed effects X X X X
State-by-Year fixed effects X X

Notes: The table presents the results from OLS regressions estimating the relationship between actual robot
adoption and average robot exposure in other high-income European countries at the local labor market region
level in West Germany for industrial robots in all industries (left sub-panel) and automobile industry (right sub-
panel). The sample at the level in panel A covers periods between 2014 and 2018, while the sample in panel B for
annual changes covers 2015-2018. The actual robot adoption is measured by aggregating the number of robots
adopted by the firm at the district level using sampling weights provided in the IAB Establishment Panel data
and expressed as per 1,000 workers. The robot exposure shock into the local labor market regions or districts is
measured by the robots stock at the industry level in six other European countries (Spain, France, Italy, Norway,
Sweden, and UK) “predicted” to districts using employment shares and expressed as per 1,000 workers. The
actual robot adoption and robot exposure shock are normalized by the number of workers in the previous period.
The relationship in panel A was estimated at the level, while panel B shows the relationship between the annual
changes. Standard errors clustered by districts are in parentheses.

Third, I conduct the robustness by estimating the relationship between firm-level actual robot adop-
tion and district-level robot exposure shock as follows:

Actual robot adoptionjdt = α + βRobot exposure shockdt + φj + µkt + ϕst + εjdt, (B.1)

where Actual robot adoptionjdt is the number of robots used by the firm j in district d per 1,000
workers in year t, φj is the firm fixed effects, µkt is the industry-by-year fixed effects, and all other
terms are the same as those in equation (7). Table B.4 presents the estimation results, showing that
the relationship between firm-level actual robot adoption and district-level robot exposure shock is
essentially zero. It suggests that the baseline findings in Section 4.5 are substantially robust.
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Table B.4: Relationship between Firm-Level Actual Robot Adoption and District-Level
Robot Exposure Shock

Dependent variable: Firm-level actual robot adoption

(1) (2) (3) (4)
Panel A. Robots per 1000 workers

Robot exposure shock 0.047 0.065 0.068 0.114
(0.029) (0.152) (0.153) (0.195)

N 6442 6418 6418 6215
R2 0.02 0.17 0.18 0.75

Panel B. ∆Robots per 1000 workers

∆Robot exposure shock 0.034 -0.148 -0.169 -0.160
(0.060) (0.104) (0.104) (0.128)

N 5275 5256 5256 5050
R2 0.01 0.11 0.12 0.46

Panel C. ∆Robots per 1000 workers

∆Robot exposure predicted from the first-stage 0.008 -0.029 -0.028 -0.025
(0.017) (0.024) (0.024) (0.029)

N 4616 4606 4606 4433
R2 0.01 0.10 0.10 0.46

Year fixed effects X X
State fixed effects X
District fixed effects X X
State-by-Year fixed effects X X
Firm fixed effects X

Notes: The table presents the results from OLS regressions estimating the relationship between the firm-
level actual robot adoption and district-level robot exposure shock. The sample at the level in panel A covers
periods between 2014 and 2018, while the sample in panels B and C for annual changes covers 2015-2018. The
firm-level actual robot adoption is measured by the number of robots adopted by the firm per 1,000 workers.
The robot exposure shock in panels A and B is measured by the average robot stock in all industries in other
high-income European countries (Spain, France, Italy, Norway, Sweden, and UK) “predicted” to districts
using employment shares and expressed as per 1,000 workers. The district’s exposure to robots in panel C
is predicted from the first stage of the IV (2SLS) regression. The actual robot adoption and robot exposure
are normalized by the number of workers in the previous period. Standard errors clustered by districts are in
parentheses.
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C Production Function Estimation
I bring the data to the following production function to estimate parameters β:

yjt = f(xjt;β) + ωjt + εjt, (C.1)

where yjt is log output, xjt is a vector of log inputs, both fully variable inputs (e.g., intermedi-
ate materials mjt) and not fully variable inputs (e.g., labor ljt57 and capital kjt). The firm-specific
productivity ωjt embeds the constant term. The error term εjt reflects measurement error in gross
outputs yjt defined as revenue deflated by the producer price index for industrial products at the
2-digit industry level.58 I write the production function in general terms as I estimate the log trans-
formation of the production function f(·) in various functional forms (e.g., Cobb-Douglas and
translog) with translog59 as the primary specification given its flexibility.

The main challenge in estimating the firm-level production function in equation (C.1) is the
classical problem of endogeneity of inputs, i.e., input demand is likely to be correlated with unob-
servables, particularly the firm’s productivity. To address this challenge and provide a consistent
estimate of production function parameters, I rely on the refined control function approach pro-
posed by Ackerberg et al. (2015) (ACF). The ACF method is designed for value-added production
functions, and Gandhi et al. (2020) suggest that we cannot accurately identify gross output produc-
tion function parameters using the ACF approach without further assumptions. Hence, our data that
reports the firm’s revenue and purchases of intermediate materials enable me to employ the ACF
approach. The identification strategy behind the control function method of ACF (also Olley and
Pakes (1996) and Levinsohn and Petrin (2003)) relies on the assumption that firms dynamically
optimize their decisions in discrete times. The intuition behind identifying consistent estimators
using control function or “proxy variable” methods can be thought through the logic of IV estima-
tors (Wooldridge, 2009; Yeh et al., 2022).

Let’s separate a vector of log inputs xjt into vjt (log of fully flexible inputs Vjt) and kjt
(log of non-fully flexible or fixed inputs Kjt). Thus, the production function can be denoted as

57In this paper, I use the number of workers as a labor input, while one can approximate the labor by wage bills. For
example, Lochner and Schulz (2024) argue that wage bills better capture heterogeneous labor inputs as they account for
workers’ ability differences. The use of wage bills generally addresses ability differences of workers as, for example,
high-skilled labor inputs cost more, and wage bills will reflect it. However, wage bills will be a biased measure of labor
input for labor markets with imperfect competition because wage bills undervalue productivity when an employer has
some monopsony power to pay less to its workers than wages in competitive markets. Hence, in our setting with
imperfect competition in the labor market, it is better to use the headcount of employees as a labor input.

58I obtained the producer price index (PPI) from the Federal Statistical Office of Germany. The PPI is only available
for industrial products in the mining, agriculture, and manufacturing sectors, which is another reason I focus on the
manufacturing industry in this study. I calculate the annual average PPI by averaging monthly PPIs.

59The output elasticities of labor and intermediate materials are calculated as θLjt = β̂l + β̂klkjt + β̂lmmjt + 2β̂llljt

and θMjt = β̂m + β̂kmkjt + β̂lmljt + 2β̂mmmjt, respectively. Here β̂l and β̂m are parameter estimates on labor and
intermediate materials, β̂ll and β̂mm are parameter estimates on quadratic terms, β̂kl, β̂lm, β̂km, β̂lm are parameter
estimates on cross terms, and l andm are, respectively, log labor and log intermediate materials.
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f(xjt;β) = f(vjt,kjt;β) = ln(F (Vjt,Kjt;β)).

Recall that firm-specific productivity ωjt unobserved by an econometrician but observed by the
firm generates a problem of endogeneity for estimating the above production function. To address
this problem, Levinsohn and Petrin (2003) suggest using the demand for intermediate materials60

mjt as a proxy for productivity, which is given by

mjt = mt(ωjt;kjt, cjt), (C.2)

where cjt denotes a vector of any additional factors that affect a firm’s demand for material inputs,
such as input prices.

Under the assumption of strict monotonicity that the control functionmt(·) is strictly increasing
in ωjt61, one can invert the equation (C.2) and express the productivity as

ωjt = m−1
t (mjt;kjt, cjt) = gt(mjt;kjt, cjt). (C.3)

Substituting equation (C.3) into the production function in (C.1), we obtain the production as a
function of only observables

yjt = f(vjt,kjt;β) + gt(mjt;kjt, cjt) + εjt

= Φt(vjt,kjt, cjt) + εjt

= φjt + εjt.

(C.4)

I implement the ACF procedure to estimate the production function, which adopts a two-stage
procedure where each stage uses a different moment condition. To perform the procedure, I take
vjt = mjt, kjt = (kjt, ljt)

′, and cjt contains additional controls, the firm fixed effects and year fixed
effects. Equation (C.4) is the first-stage estimation. The first stage is performed by OLS regression
of yjt on third-degree polynomial in x̃jt = (kjt, ljt,mjt)

′ with interaction terms and cjt to obtain
φ̂jt. For translog production technology, we have

xjt = (kjt, ljt,mjt, kjtljt, kjtmjt, ljtmjt, k
2
jt, l

2
jt,m

2
jt)
′. (C.5)

Similar to OP and LP models, the ACF model assumes that the firm’s information set at t, Ijt,
60The control function approach is also called as “proxy variable” method as it uses the intermediate inputs (in

cases of ACF and LP) or investment (in case of OP) as a proxy variable. Investments, ijt, rather than intermediate
inputs,mjt, can also be used as the proxy variable in the ACF procedure; however, one would lose the ability to allow
serially correlated, unobserved, firm-specific input price shocks to ijt and ljt. Hence, the ACF method primarily uses
intermediate inputs as a proxy variable.

61Intuitively, the strict monotonicity assumption implies that more productive firms use more intermediate materials,
which is plausible. Another advantage of proxying a firm’s productivity at time t with its materials purchase at period
t is that intermediate inputs purchased in period t are likely to be mainly used in production at time t. Although firms
can store some materials for future production, this is likely relatively small.
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includes current and past productivity shocks {ωjτ}tτ=0 but does not include future productivity
shocks {ωjτ}∞τ=t+1. Hence, the transitory shocks εjt satisfy E(εjt|Ijt) = 0. Under this assumption,
the first-stage moment condition is

E(εjt|Ijt) = E[yjt − φjt|Ijt] = 0. (C.6)

In the first stage of ACF, none of the parameters will be estimated, but it generates an estimate
φ̂jt using the above moment condition. Now, we turn to the second-stage estimation. The firm
productivity is assumed to evolve according to the following distribution, known to the firm,

p(ωit+1|Ijt) = p(ωjt+1|ωjt), (C.7)

which is stochastically increasing in ωjt. Using this assumption on the evolution of productivity
shocks and information set above, one can decompose ωjt into its conditional expectation at t− 1

and an innovation term, i.e.,

ωjt = E(ωjt|Ijt−1) + ξjt = E(ωjt|ωjt−1) + ξjt = h(ωjt−1) + ξjt, (C.8)

where E(ξjt|Ijt−1) = 0. Substituting this into production function in (C.1), we get

yjt = f(xjt;β) + h(ωjt−1) + ξjt + εjt

= f(xjt;β) + h [φt−1 − f(xjt−1;β)] + ξjt + εjt,
(C.9)

where the second line follows from the definition of φt−1.

Since E(ξjt|Ijt−1) = 0 and E(εjt|Ijt) = 0 (which also implies E(εjt|Ijt−1) = 0), the second
stage of ACF estimation procedure uses the following moment condition:

E(ξjt + εjt|Ijt−1)

= E[yjt − f(xjt;β)− h
(
φ̂t−1 − f(xjt−1;β)

)
|Ijt−1] = 0,

(C.10)

where φt−1 is replaced by its estimate from the first stage. Wooldridge (2009) pointed out that the
functions φt and h can be thought of as IV estimators. Additionally, Yeh et al. (2022) discuss how
the identification of the ACF estimator can be interpreted through the logic of an IV estimator. We
transform conditional moments into unconditional moments for actual estimation. To illustrate the
second-stage moment conditions, suppose that the productivity process is defined as

ωjt = st(ωjt−1) + ξjt. (C.11)

Then, I approximate the productivity in the data as

ωjt(β) = φ̂jt − f(xjt;β). (C.12)
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Then, I approximate st(·) with P th-order polynomial in its arguments

ωjt(β) = Ωjt−1(β)′ρ(β) + ξjt

=
P∑
p=0

ρpω
p
jt−1(β) + ξjt.

(C.13)

Thus, the innovations to productivity are constructed as a function β as

ξjt = ωjt(β)− Ωjt−1(β)′ρ̂(β), (C.14)

where ρ̂(β) = ({ρ̂p}Pp=1)′ is obtained by regressing Ωjt−1(β) on ωjt(β) with OLS, and I set P = 3

following De Loecker and Warzynski (2012) and Yeh et al. (2022).

Following De Loecker and Warzynski (2012) and Yeh et al. (2022), I define the instrument
zjt ∈ RZ as the vector that contains one-period lagged values of every polynomial term in f(xjt;β)

including ljt andmjt but capital at the current period kjt. Thus, the system of second-stage moment
conditions for GMM estimation to identify β ∈ RZ is defined as

E(ξjt(β)zjt) = 0Z×1. (C.15)

Now, I briefly discuss assumptions behind the moment conditions. First, labor input ljt is assumed
to be chosen at period t, t− 1, or somewhere between the two periods at t− b where 0 < b < 1. It
allows labor to have some dynamic pattern and addresses the fact that labor inputs are more flexible
than capital. Given some adjustment costs and other frictions in the labor market, for example, due
to labor contracts, ljt is modeled to be chosen at t− b, not all the points between t and t− 1. In this
sense, labor is not a perfectly variable input in the ACF, which is a weaker assumption than the OP
in which labor is perfectly variable. The assumption that labor is chosen after time t − 1 implies
that ljt is correlated with ξjt.

Second, the capital kjt is assumed to be accumulated according to the following form:

kjt = κ(kjt−1, ijt−1), (C.16)

where investment ijt−1 is chosen in period t−1. Thus, we assume that the firm’s choice of capital at
time t is predetermined in period t−1 with choices of kjt−1 and ijt−1. So it is safe to assume that kjt
is orthogonal to ξjt + εjt. For other terms in the “instrument”, they all take their one-period lagged
values, which must be orthogonal to the current period innovations (except for capital investment)
because firms cannot observe their idiosyncratic shocks in the future.
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D Overview of Monopsony Measures
There are several different but related approaches to measuring employer power (see Manning,
2021, for a recent survey on measures of monopsony). The choice of method to use depends on
the objectives of the analysis, the framework under consideration, and the data available to the re-
searcher. In the traditional model, the labor market has a single buyer. Since there is only one
buyer, that buyer faces the entire market’s labor supply curve, upward sloping—in contrast to the
horizontal labor supply curve for an individual firm in the perfectly competitive labor market with
many employers. In the early stage of the literature, monopsony power has been measured as “po-
tential monopsony power” in the language of Bronfenbrenner (1956) by estimating wage elasticity
of labor supply to the firm under the assumption of an isolated labor market with a single firm. We
rarely use the traditional model with this assumption because, in practice, it is unlikely that there is
only one employer in the labor market.

The literature suggests several sources of upward-sloping labor supply curve to an individual
firm in the presence of other firms. As reviewed by Boal and Ransom (1997) and later summarized
by Naidu and Posner (2022), they include (i) collusion and Cournot competition among firms, (ii)
workers’ heterogeneous preferences for firms, (iii) the presence of workers’ moving costs to change
employers, (iv) search friction, and (v) efficiency wages at large firms. The labor supply elasticity
still can be functional to quantify the labor market power; however, there are other measures, such
as job separation rate, if models of job search (Burdett and Mortensen, 1998) are used to interpret
the source of monopsony power.

This appendix first briefly shows the relationship betweenmarkdowns and labor supply elasticity
using a simple model with an arbitrary functional form assumption. Consider a revenue function
R(l) = (a − bl/2)l and the associated profits R(l) − W (l) where W (l) = ws(l)l denotes total
labor cost. An inverse labor supply function is given by ws(l) = ū + τ l where ū is the constant
utility when a worker does not work, and τ ∈ [0, T ] is the mobility cost or travel cost for the
worker, which is assumed to be exogenous at this point, and τ ≡ T/L where L is a population of
workers. It is worth noting that, in this model for illustration, I use mobility cost τ as the source of
the upward-sloping labor supply curve, i.e., the labor supply curve to an individual firm will be a
horizontal linews(l) = ū if we shut down the mobility cost or set τ = 0. Figure D.1 shows the labor
market equilibrium under perfect (panel (a)) and imperfect (panel (b)) competition. The first-order
condition for profit maximization problem implies that profits are maximized at an employment
level where the marginal revenue product of labor (MRPL), Rl(l) = a − bl, generated to the firm
equals the marginal cost of labor, Wl(l) = ū + 2τ l. Since the marginal cost of labor exceeds the
wage, lo number of workers will be hired by the firm, which is less than the socially efficient amount
l∗. The firm pays a wage of wso less than the socially efficient level, w∗.
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Figure D.1: Individual Firm’s Labor Market Equilibrium

(a) Perfect competition

l

w

LS = MC

LD = MR

l∗

w∗

(b) Monopsony

l

w MC = Wl(l; τ) = ū+ 2τ l

LS = ws(l; τ) = ū+ τ l

LD = MR = a− bl

lo l∗

ū

wso
w∗
wdo

a

Notes: Panel (a) depicts the labor market equilibrium for an individual firm under perfect competition, while panel (b)
illustrates a basic model of monopsony.

The profit maximization problem in the basic monopsony model is

max
l≥0

R(l)− ws(l)l, (D.1)

where I ignore the index of firm i and time t for notational simplicity at the moment. The first-order
condition of this maximization problem is

Rl(l) =

(
wl(l)l

w(l)
+ 1

)
w(l) =

(
ε−1
S + 1

)
w(l), (D.2)

and, thus, the markdown ν, a wedge between the MRPL and the wage, is

ν ≡ Rl(l)

w(l)
= ε−1

S + 1 (D.3)

where Rl(l) = ∂R(l)
∂l

is the MRPL, w(l) is the wage, and εS = ∂l
∂w(l)

w(l)
l

is the elasticity of labor
supply.

As shown by the optimality condition in equation (D.3) and Figure D.1b, the wedge between
the MRPL and the monopsony wage is directly linked to the wage elasticity of labor supply to an
individual firm. In addition to measuring the monopsony by estimating the elasticity of labor sup-
ply on the right-hand side of (D.3) as mentioned above, we can compute the degree of monopsony
power by estimating the wedge between the (nominal) wage wso and MRPL wdo on the left-hand
side of (D.3), which is expressed by the distance between wso and wdo in Figure D.1b.

Second, I review other methods of measuring monopsony power, starting with different vari-
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ants of labor supply elasticity. In a dynamic setting, a measure of monopsony based on a model
pioneered by Manning (2003) indirectly quantifies the wage elasticity to the firm by estimating its
two components using the following steady-state relationship:

εNw = εRw − εqw, (D.4)

where εNw is the wage elasticity of labor supply to the firm, εRw is the wage elasticity of the share of
recruits hired from employment, and εqw, is the wage elasticity of workers’ separation decisions to
either employment or unemployment. Manning (2021) calls this a “modern” monopsony in which
labor market frictions play a critical role.

The classical monopsony in static settings has also been recently revived, and Card et al. (2018)
argue that the labor supply curve that an individual firm faces would be imperfectly elastic due
to idiosyncratic non-wage amenities offered by firms even if there are a small number of firms in
the labor market. The idea here is that a wage decline, for example, does not necessarily lead all
existing workers to leave because some might still like their idiosyncratic non-wage aspects. In this
strand, the wage elasticity of the labor supply curve to an individual firm j is derived as:

1

εj
=

1− sj
ε

(D.5)

where sj is the market share of the firm, and ε is the inverse of the elasticity of labor supply faced
by the firm as the labor supply is given by nj = ε−1(wj−bj) where nj is log employment, wj is log
wage, and bj is a labor supply shifter. Manning (2021) calls this as a “new classical” monopsony
in which non-wage amenities play in key role.

The measures of monopsony described above and in Section 3 are derived from theories. But
there are also some measures borrowed from other fields of economics. For example, one can
use concentration ratios for vacancies and employment using the Herfindahl index borrowed from
Industrial Organization (IO) literature (Azar et al., 2019). Relatedly, perfectly elastic labor supply
(or ε ≈ 0) implies perfect competition in the labor market, which is consistent with the monopsony
model, if a firm j’s market share is small (or sj ≈ 0) according to equation (D.5). One could also
use the number of employers in the labor market relative to the number of workers as a measure
of (inverse) employer power or monopsony. In particular, if the ratio of employers to workers is
lower, employer power is higher. Intuitively, the wage elasticity of labor supply positively relates
to the number of firms in the market since workers’ quit rate and labor supply elasticity would be
higher in a market with more employers or vacancies. For example, Chau and Kanbur (2021) used
this measure to analytically examine the impact of monopsony power on wage inequality in a labor
market with search frictions.
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E Additional Results on Markdowns

E.1 Robustness of Estimated Markdowns for German Manufacturing

In this paper, I show that estimated markdowns for East and West Germany are higher in the East
than in the West. In this appendix, I check the robustness of my baseline markdown estimates for
Germanmanufacturing by pooling the markdowns estimated separately for East andWest Germany.
The country-level median and average markdowns in Table E.1 are highly similar to those in Table
4. The markdown distribution across industries within manufacturing is also consistent with my
baseline estimates.

Table E.1: Estimated Plant-Level Markdowns in German Manufacturing

Median Mean IQR75-25 SD
Leather and related products 2.185 2.021 1.395 0.748
Wearing apparel 2.014 1.992 1.151 0.699
Furniture 1.704 1.819 1.055 0.705
Wood and wood products (excl. furniture) 1.524 1.629 0.882 0.560
Paper and paper products 1.437 1.447 0.604 0.498
Beverages 1.430 1.488 0.395 0.544
Repair and installation of machinery and equipment 1.320 1.517 0.691 0.646
Other transport equipment 1.319 1.346 0.829 0.507
Rubber and plastics 1.294 1.388 0.586 0.512
Other non-metallic minerals 1.284 1.435 0.754 0.645
Chemicals and chemical products 1.277 1.431 0.855 0.603
Motor vehicles, trailers, and semi-trailers 1.244 1.359 0.731 0.550
Basic pharmaceutical products 1.241 1.313 0.588 0.634
Fabricated metals, excl. machinery and equipment 1.193 1.322 0.666 0.535
Food products 1.179 1.306 0.682 0.563
Electrical equipment 1.154 1.225 0.562 0.481
Machinery and equipment 1.116 1.229 0.551 0.517
Basic metals 1.063 1.172 0.431 0.419
Textiles 1.046 1.238 0.562 0.460
Computer, electronic, and optical products 1.017 1.078 0.583 0.416
Other manufacturing 0.992 1.096 0.465 0.438
Printing and reproduction of recorded media 0.968 1.020 0.395 0.431

Whole sample 1.200 1.331 0.726 0.569
Sample size 9,431

Notes: Markdowns are estimated for East and West German establishments separately using the IAB Es-
tablishment Panel from 1997-2018 under the assumption of a translog specification for gross output. The
plant-level markdowns estimated separately for East andWest German establishments are pooled to calculate
the nationally representative estimate. Each industry group in manufacturing corresponds to the manufactur-
ing categorization of the Federal Statistical Office. The distributional statistics are calculated using sampling
weights provided in the data. Industries of wearing apparel and leather and related products are censored in
this table because industry-specific markdowns were estimated for less than 20 establishments in these two
industry groups, and thus the number of observations slightly declined.

To further analyze the production technologies in East and West Germany and compare them
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with that estimated on the full sample, Table E.2 presents production parameters and output elastic-
ities estimated on different samples. Despite some differences in production parameters across East
and West Germany, I find that output elasticities separately estimated for East/West Germany are
comparable to those estimated on a nationally representative sample covering the entire country.
Thus, using the same production function for East and West German manufacturing firms as I did
in my baseline markdown estimation is reasonable.

Table E.2: Components of Markdown Estimates under
Translog Function

Full sample East Germany West Germany(Germany)
(1) (2) (3)

Panel A. Production parameters

βk 0.146 0.155 0.202
βl 0.723 0.823 0.656
βm 0.260 0.140 0.253
βkl 0.036 0.033 0.064
βkm -0.039 -0.038 -0.051
βlm -0.133 -0.133 -0.143
βk2 0.006 0.005 0.001
βl2 0.052 0.037 0.043
βm2 0.075 0.083 0.083

Panel B. Elasticities

θl 0.383 (0.118) 0.369 (0.122) 0.395 (0.122)
θm 0.604 (0.128) 0.609 (0.136) 0.586 (0.136)

Notes: Panel A presents production function parameters estimated on
the full sample (Column 1), sub-sample of East German establishments
(Column 2), and sub-sample of West German firms (Column 3) using
the IAB Establishment Panel data in 1997-2018 under translog speci-
fication. In Panel B, I show the mean value of output elasticities esti-
mated on different samples, and standard errors are in parenthesis. The
elasticities are calculated using sampling weights provided in the data.

The literature usually estimates industry-specific production function to account for heterogene-
ity in production across industries (e.g., Yeh et al., 2022; Brooks et al., 2021). However, in my base-
line analysis, I estimate a production function common across sectors, mainly because the number
of manufacturing firms in the primary firm-level data is relatively small, although the survey is
nationally representative. Estimating the production function for each two-digit industry provides
noisier markdown estimates than the baseline markdowns, as shown in Table E.3. Therefore, I pre-
fer to employ production functions similar across industry groups in my baseline analysis, which
provides more stable results. However, the overall markdowns are generally consistent with my
baseline markdowns in median and average manufacturers.
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Table E.3: Estimated Plant-Level Markdowns in German Manufacturing
(Industry-Specific)

Industry Group Median Mean IQR75-25 SD

Furniture 5.261 6.178 3.359 3.134
Other non-metallic minerals 5.064 6.231 4.275 3.133
Repair and installation of machinery and equipment 3.024 3.948 3.233 2.406
Other manufacturing 2.604 2.986 1.737 1.713
Textiles 2.523 3.141 2.106 2.061
Paper and paper products 1.909 2.168 1.980 1.165
Wood and wood products (excl. furniture) 1.507 1.981 1.842 1.543
Fabricated metals, excl. machinery and equipment 1.481 1.677 0.797 0.902
Rubber and plastics 1.376 1.652 0.691 1.412
Motor vehicles, trailers, and semi-trailers 1.331 1.605 0.729 1.083
Beverages 1.317 1.771 1.327 1.461
Machinery and equipment 1.307 1.360 0.507 0.484
Food products 1.052 1.230 0.701 0.622
Basic metals 1.050 1.119 0.722 0.538
Chemicals and chemical products 1.047 1.142 0.750 0.562
Other transport equipment 1.027 1.190 0.544 0.638
Computer, electronic, and optical products 0.985 1.219 0.680 1.318
Electrical equipment 0.942 1.005 0.868 0.664
Printing and reproduction of recorded media 0.803 0.879 0.581 0.574
Basic pharmaceutical products 0.623 0.693 0.691 0.647

Whole sample 1.413 2.111 1.321 2.125
Sample size 12,588

Notes: Markdowns are estimated separately for each two-digit industry group using the IAB Establishment
Panel from 1997-2018 under the assumption of a translog specification for gross output. Each industry
group in manufacturing corresponds to the manufacturing categorization of the Federal Statistical Office.
The distributional statistics are calculated using sampling weights provided in the data.

E.2 Markdown Trend under Cobb-Douglas Specification

As an alternative to my baseline choice of the functional form of the production function, translog,
I estimate the production function and thus markdowns using Cobb-Douglas specification. Figure
E.1 illustrates the time trend of aggregate markdowns. The result suggests that my estimates are
not entirely but generally robust to this different functional form.
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Figure E.1: Time Evolution of Aggregate Markdowns under Cobb-Douglas Specification

Notes: Markdowns are constructed using the IAB Establishment Panel (IAB BP) data from 1997-2018 under the as-
sumption of Cobb-Douglas production and aggregated according to expression (E.1) and (E.3). The employment share
of labor market ωklt is based on total number of employees.

E.3 Markups

Table E.4 reports the markup estimates. The summary statistics are provided for each industry
group. The results indicate a presence of market power in output markets: producers have about
31 percent (26 percent) of market power at the plant-year level at the mean (median). Compared to
the markdowns, variations of markups across and within industry groups are relatively smaller than
variations of markdowns. The IQR and standard deviation are 19.3 and 18.7 percent, respectively.

Although these estimates of markups are informative, they are subject to bias because physi-
cal outputs are proxied by revenues deflated by 2-digit industry-level prices (Klette and Griliches,
1996; Bond et al., 2021). So, one should take these markup estimates as lower bounds for market
power in output markets. Fortunately, our estimates of markdown, which is my main focus in this
paper, are still valid with these estimates of markups as the bias cancels out in the equation (1). So,
the markdowns estimated using deflated revenues are not subject to Bond et al. (2021)’s critique
when the markups are used to obtain estimates for markdowns. A formal proof can be found in
Appendix O.6 of Yeh et al. (2022).

Figure E.2 presents the time series for the aggregate markup. The markup is aggregated at
the market level according to equation (E.2). Then, I aggregate markups across markets through
employment weights. As briefly discussed above, firm-level markups estimated using deflated rev-
enues instead of physical outputs are biased, and thus, the aggregate markups are also biased. While
we should take the markup estimates cautiously, a trend in aggregate markups could be informative.
The markup in German manufacturing has been monotonically increasing since 1997 until 2018.
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Table E.4: Estimated Plant-Level Markups in German Manufacturing

Industry Group Median Mean IQR75-25 SD

Printing and reproduction of recorded media 1.422 1.435 0.250 0.214
Food products 1.357 1.381 0.244 0.184
Other manufacturing 1.342 1.372 0.179 0.158
Computer, electronic, and optical products 1.334 1.398 0.314 0.223
Beverages 1.333 1.417 0.324 0.322
Basic pharmaceutical products 1.284 1.312 0.241 0.147
Textiles 1.281 1.335 0.281 0.205
Fabricated metals, excl. machinery and equipment 1.276 1.317 0.167 0.190
Furniture 1.243 1.250 0.098 0.076
Wood and wood products (excl. furniture) 1.237 1.335 0.228 0.253
Paper and paper products 1.237 1.248 0.162 0.127
Other non-metallic minerals 1.235 1.274 0.173 0.143
Motor vehicles, trailers, and semi-trailers 1.226 1.270 0.116 0.172
Repair and installation of machinery and equipment 1.223 1.269 0.057 0.122
Machinery and equipment 1.218 1.256 0.123 0.151
Rubber and plastics 1.205 1.231 0.109 0.103
Basic metals 1.199 1.211 0.133 0.100
Electrical equipment 1.196 1.226 0.110 0.114
Other transport equipment 1.185 1.271 0.251 0.190
Leather and related products 1.182 1.197 0.035 0.066
Chemicals and chemical products 1.176 1.216 0.107 0.141
Wearing apparel 1.162 1.206 0.055 0.151

Whole sample 1.258 1.310 0.193 0.187
Sample size 12,794

Notes: Markups are estimated using the IAB-BP data from 1997-2018 under the assumption of a translog specifica-
tion for gross output. Each industry group in manufacturing corresponds to the manufacturing categorization of the
Federal Statistical Office. The distributional statistics are calculated using sampling weights provided in the data.

Figure E.2: Time Evolution of Markups across German Manufacturing Plants

Notes: Markups are constructed using the IAB Establishment Panel data from 1997-2018 under the assumption of
translog production and aggregated according to expressions (E.2) and (E.4). The employment share of labor market
ωjlt is based on total number of employees.
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E.4 Markdown Estimation Controlling for Robot Exposure

The studies estimating the production function and markups using the production approach tend
to include the key explanatory variable of interest in the production function. For example, Brandt
et al. (2017) include their measure of trade liberalization in the estimation of production parameters
to examine the effects of trade liberalization in China on markups and productivity of Chinese man-
ufacturing firms. In this appendix, I similarly include the measure of exposure to industrial robots
in the production function estimation and check the robustness of the baseline markdown estimates.
Table E.5 compares the markdown estimates from this analysis with the baseline measure, showing
that the estimated markdown remains the same when including Germany’s exposure to industrial
robots in the production function estimation.

Table E.5: Estimated Plant-Level Markdowns with and without Robot Exposure in
the Production Function Estimation

Mean SD Min Max N
Baseline measure (without robot exposure) 1.271 0.565 0.018 3.656 12,806
Alternative measure (with robot exposure) 1.279 0.532 0.002 3.390 9,564

Notes: Markdowns are estimated using the IAB Establishment Panel from 1997-2018 under the as-
sumption of a translog specification for gross output. The distributional statistics are calculated using
sampling weights provided in the data.

To further illustrate the similarity between the two markdown measures, I regress the baseline
measure on the alternative measure conditional on plant and year fixed effects and find a coefficient
of 0.993 (SE: 0.000, p-value: 0.00). Although the two measures are almost identical, I use the
baselinemarkdownmeasure estimatedwithout robot exposure in the production function estimation
as it is estimated for 30% more observations than the alternative measure.

E.5 Markdown and Markup Aggregation

The aggregate markdowns and markups are defined, respectively, as

Vklt =

(∑
j∈Ft(k,l)

sjt ·
θLjt
θLklt
· (νjtµjt)−1

)−1

(∑
j∈Ft(k,l)

sjt ·
θMjt
θMklt
· µ−1

jt

)−1 , (E.1)

and

Mklt =

 ∑
j∈Ft(k,l)

sjt ·
θMjt
θMklt
· µ−1

jt

−1

, (E.2)

where θLklt and θMklt are, respectively, the average output elasticities of labor and intermediate ma-
terials in the industry k, location l, and year t. Here sjt =

pjtyjt
PkltYklt

are sales weights62 and Ft(k, l)
62I use sales weights strictly following Yeh et al. (2022), while the plant-level measures can also be aggregated

using employment weights. The pattern and interpretation of aggregate measures are the same when the employment
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denotes the set of firms in local labor market (k, l).

I further aggregate themarkdowns andmarkups across labormarkets using employment weights
(Rossi-Hansberg et al., 2021) to examine whether monopsony power in German manufacturing has
increased over time. Specifically, I define

Vt =
∑
k∈K

∑
l∈L

ωkltVklt, (E.3)

and
Mt =

∑
k∈K

∑
l∈L

ωkltMklt, (E.4)

where ωklt is the employment share of labor market (k, l).

E.6 Measuring Labor Market Concentration

Given that I have worker-level administrative data matched with their employer, I first count workers
at each establishment and then construct the HHI in labor market (o, l) and time t as

HHImt =
I∑
j=1

s2
jmt, (E.5)

where s2
jmt is the market share of firm j in marketm = (o, l) as a number between 0 and 100, and o

and l denotes occupation and geography index, respectively. In the alternative definition, I calculate
(E.5) for marketm′ = (k, l) where k is the industry index. A firm’s market share in a given market
m (or m′) and time t is defined as the sum of workers at a given firm in a given market and time
divided by the total workers in that market and time. The average HHIs are calculated by weighted
average using employment as weights. Formally,

HHIlt =
∑
o∈O

ωoltHHIolt (or HHIlt =
∑
k∈K

ωkltHHIklt), (E.6)

and
HHIlt =

∑
k∈K

∑
l∈L

ωkltHHIklt. (E.7)

weights are employed because the sales and the number of workers are positively correlated, i.e., firms with higher
sales employ more workers. The pairwise correlation between the log employment and log sales revenue is 0.944 (SE:
0.003, p-value: 0.00). Controlling for firm, year, district-by-year, and industry-by-year, I also find that the coefficient
on log revenue in the regression of log employment is 0.333 (SE: 0.023).
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E.7 Cross-Sectional Correlation between Markdown and Labor Market
Concentration

Table E.6 presents the cross-sectional correlation (across labor markets–a combination of 3-digit
industries and federal states) between the aggregate markdown Vklt and labor market concentration
HHIklt. The correlation calculated using the same dataset (IAB Establishment Panel–IAB BP) is
positive and statistically significant at the 1% level on average; however, the correlation coefficient
is 0.02, which is close to zero (second column).

Table E.6: Correlation between Employment HHIs and Aggregate
Markdowns across Local Labor Markets

Year ρ(Vjlt,HHIIAB-BPjlt ) ρ(HHIIAB-BPjlt ,HHILIABjlt ) ρ(Vjlt,HHILIABjlt )

1998 0.156** 0.143** 0.203***
2000 0.045 0.149** 0.129**
2002 0.085* 0.213*** 0.056
2004 0.055 0.203*** 0.103**
2006 0.011 0.220*** 0.085*
2008 -0.021 0.237*** 0.074
2010 -0.042 0.330*** 0.038
2012 0.026 0.266*** 0.131**
2014 -0.028 0.223*** 0.020
2016 -0.014 0.138** 0.045
2018 0.072 0.258*** 0.122

Average 0.024** 0.215*** 0.081***

Notes: Markdowns are estimated using the IAB Establishment Panel (IAB BP) data
from 1997-2018 under the assumption of a translog specification for gross output. The
cross-market correlations are calculated at the 3-digit ISIC-state level for every other year.
Aggregate markdowns are calculated according to equation (E.1) whereas labor market
concentration HHIklt is calculated according to equation (E.5) using either IAB BP and
matched employer-employee (LIAB) data, which are highlighted in the superscript. Sig-
nificance: *p < 0.10, **p < 0.05, and ***p < 0.01.

To check the robustness ofmy baseline employment HHImeasure calculated using IABBP data,
I compute the same index according to equation (E.5) based on the matched employer-employee
data (LIAB). The cross-section correlation between the two HHIs is strong, positive, and almost
always statistically significant at the 1% level (third column). Across years and on average, the
correlation between aggregate markdown and LIAB-based HHI is mostly positive but rarely statis-
tically significant (fourth column), consistent with the results in the second column.

E.8 Trends in Aggregate Markdowns for Heterogeneous Workers

I aggregate the plant-level markdowns for heterogeneous workers using equations (E.1) and (E.3)
similar to the baseline analysis where workers are homogeneous to show how employers’ labor mar-
ket power has changed for different workers in German manufacturing over time. Figure E.3 illus-
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trates the trends of aggregate markdowns, Vt, over workers performing routine, nonroutine manual,
and nonroutine cognitive tasks. Markdowns for workers performing manual and routine tasks have
been decreasing, and the decline is more intensive in magnitude for manual task-performing work-
ers.63 Labor market power for nonroutine cognitive workers has been stable between 1997-2018.

Figure E.3: Time Evolution of the Aggregate Markdowns for Workers Performing Different Tasks

Notes: The figure depicts the time evolution of aggregate markdowns for nonroutine cognitive, routine, and man-
ual workers between 1997 and 2018. Plant-level markdowns are constructed using the IAB Establishment Panel and
matched employer-employee (LIAB) data under the assumption of translog production with heterogeneous labor inputs
and aggregated according to expressions (E.1) and (E.3). The employment share of labor market ωklt is based on the
total number of employees. The classification of nonroutine cognitive, routine, and nonroutine manual task-performing
workers is based on the BIBB/BAuA Employment Surveys.

Figure E.4 illustrates the time evolution of aggregate markdowns for workers with different
skills. The results for low-skilled and high-skilled workers are generally consistent with work-
ers performing various tasks. Specifically, the pattern of employers’ labor market power for low-
skilled or low-educated workers is downward-sloped, potentially driven by manual workers. The
markdown for high-skilled or high-educated workers has been relatively stable between 1997-2018,
similar to cognitive workers.

63A downward trend in markdown for routine workers is strongly consistent with Bachmann et al. (2022b) who show
that labor supply elasticity, proportional to the inverse of markdown, has been increasing for routine workers.
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Figure E.4: Time Evolution of the Aggregate Markdowns for Workers with Different Skills

(a) Low-skilled (b) High-skilled

Notes: The figure plots the time evolution of aggregate markdowns for low-skilled workers (no vocational training) and
high-skilled workers (with at least vocational training) from 1997-2018. Plant-level markdowns are constructed under
the assumption of translog production with heterogeneous labor inputs and aggregated according to expressions (E.1)
and (E.3). The employment share of labor market ωklt is based on the total number of employees.

E.9 Robustness of Markdowns for Heterogeneous Workers

In my baseline analysis, I define heterogeneous workers performing different tasks based on task in-
tensity measures constructed using Germany’s BIBB/BAuA Employment Surveys and an approach
by Antonczyk et al. (2009). But this appendix checks the robustness of my results on markdowns
for heterogeneous workers performing different tasks to the use of alternative task intensity mea-
sures proposed by Autor and Dorn (2013).64

Classification of Workers. Since Autor and Dorn (2013) create their measures of task con-
tent or task inputs for each occupation in the U.S. using O∗NET data, the values of the indices
could be different from the values of indices constructed using the German dataset of BIBB/BAuA
Employment Surveys. However, it is reasonable to consider that these two measures are compa-
rable. Specifically, they build three measures of abstract, routine, and manual task inputs for their
constructed version of 3-digit 1990 U.S. Census occupations (occ1990dd). I match them with Ger-
man administrative data through Germany’s 5-digit KldB 2010 occupation classifications based on
several crosswalks. First, I obtain Autor and Dorn (2013)’s version of 3-digit 1990 U.S. Census
occupations matched with 3-digit 2000 U.S. Census occupations (occ2000) from Acemoglu and
Autor (2011)’s data appendix of task measure construction. Then, I match that with the 6-digit
2000 Standard Occupational Classification (SOC) via 3-digit 2000 U.S. Census occupations using
their crosswalks.65 After that, using crosswalks obtained from the Institute for Structural Research

64I obtained Autor and Dorn (2013)’s occupational task measures from David Dorn’s website:
https://www.ddorn.net/data.htm#Occupational%20Tasks

65The data files of task measure construction and the crosswalks are available on David Autor’s website:
https://economics.mit.edu/people/faculty/david-h-autor/data-archive
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(IBS),66 I matched the occ1990dd to the 6-digit 2010 SOC and then to the 4-digit 2008 Interna-
tional StandardClassification ofOccupations (ISCO-08). Finally, I match it with the 5-digit German
Klassifikation der Berufe 2010 (KldB 2010) via 4-digit ISCO-08 using a crosswalk obtained from
Germany’s Federal Employment Agency (Bundesagentur für Arbeit).67 After all these crosswalks,
I have Autor and Dorn (2013)’s three measures for abstract, routine, and manual task inputs merged
to Germany’s linked employer-employee data at the 5-digit occupations level.

The three indices for abstract, routine, and manual task inputs in each occupation o in 1980,
which are scaled between zero and ten, are denoted as TAo,1980, TRo,1980, and TMo,1980, respectively,
before merging with the matched data. But after matching these with the linked data (LIAB), I
denote them as TAijt, TRijt, or TMijt although the values are the same across worker i, firm j, and year
t within an occupation o. Since I have an individual index i, I drop the occupation index o. Then,
following Acemoglu et al. (2023), I normalize these three measures to have mean zero and unit
standard deviation. Using these indices, I determine whether a worker i at firm j in year t is an
abstract, routine, or manual worker if the maximum of the three normalized tasks inputs measure
is TAijt, TRijt, or TMijt , respectively. Table E.7 summarizes the employment, wage bill, and daily wage
for abstract, routine, and manual workers.

Table E.7: Summary Statistics (Abstract, Routine, and Manual Workers)

Abstract Routine Manual

Mean SD N Mean SD N Mean SD N
Log labor 2.553 1.393 6659 2.828 1.450 8142 2.364 1.379 6607
Labor cost (% revenue) 0.066 0.100 9718 0.126 0.122 9718 0.071 0.103 9718
Daily wage (€) 115.9 71.60 6657 74.67 37.91 8132 66.85 45.74 6602

Notes: The table summarizes the employment, labor cost, and daily wages for abstract, routine, and manual workers
over the period 1997-2018. The classification of workers is based on Autor and Dorn (2013)’s task content/inputs
measures. Employment andwage bill information comes from the IABEstablishment Panel while daily wage comes
from the matched employer-employee (LIAB) data. The unit of observation is the firm, and sampling weights are
applied.

Estimated Markdowns for Heterogeneous Workers. Table E.8 presents the estimated plant-
level markdowns for heterogeneous workers, generally consistent with my baseline results. Specif-
ically, routine workers are subject to the lowest degree of monopsony power, while manual workers
are subject to the highest labor market power on average. Markdown for manual workers is also the
highest in the median firm; however, abstract workers have slightly lower markdown than routine
workers, a different result from the baseline. This difference could be due to contextual differences
and resulting differences in task contents for occupations.

66https://ibs.org.pl/app/uploads/2016/04/onetsoc_to_isco_cws_ibs_en1.pdf
67The crosswalk between 4-digit ISCO-08 and 5-digit KldB 2010 can be downloaded from https:

//statistik.arbeitsagentur.de/DE/Statischer-Content/Grundlagen/Klassifikationen/
Klassifikation-der-Berufe/KldB2010-Fassung2020/Arbeitsmittel/Generische-Publikationen/
Umsteigeschluessel-KLDB2020-ISCO08.xlsx.
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Table E.8: Estimated Plant-Level Markdowns for Workers Performing
Routine, Abstract, and Manual Job Tasks in German Manufacturing

Median Mean IQR75-25 SD N
Routine workers 1.075 1.185 0.656 0.566 3779
Abstract workers 1.069 1.280 0.866 0.807 3779
Manual workers 1.634 2.310 1.355 2.354 3779

Notes: Markdowns are estimated using the IAB Establishment Panel and the linked
employer-employee (LIAB) data in 1997-2018 under the assumption of a translog
specification for gross output with heterogeneous labor inputs. Labor inputs of pro-
duction are heterogeneous by tasks performed at the workplace. I classify workers
based on Autor and Dorn (2013)’s task contents measures. The distributional statis-
tics are calculated using sampling weights provided in the data.

The distribution of markdowns for abstract, routine, and manual workers, plotted in Figure
E.5, is generally the same for nonroutine cognitive, routine, and nonroutine manual workers in the
baseline analysis.

Figure E.5: Distributions of Wage Markdowns for Abstract, Routine, and Manual Workers

Notes: Based on the IAB Establishment Panel and matched employer-employee (LIAB) data. The classification of ab-
stract, routine, and manual task-performing workers is based on Autor and Dorn (2013)’s task contents measures. The
figure depicts the markdown distributions for abstract, routine, and manual workers every other year from 1997-2018.
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F Additional Results on Firm-Level Effects

F.1 Robustness of Heterogeneous Effects by Firm Size

In Section 5.4, I define firms in the top 3 deciles of the firm size distribution as large firms and show
that markdown effects of robot exposure concentrate among such firms. This section, however,
checks the robustness of that result using alternative definitions of large firms based on different
parts of the firm size distribution. Table F.1 shows that the baseline effects heterogeneous by firm
size are remarkably robust to various definitions of large firms where the impacts are concentrated.

Table F.1: Plant-Level Effects of Robot Exposure on Wage Markdowns at Large Firms in
East Germany (Different Parts of the Firm Size Distribution)

Dependent variable:
Annual change in plant-level markdowns

Routine Nonroutine manual Nonroutine cognitive
(1) (2) (3)

Panel A. Top 2 quintiles

∆Predicted robot exposure 0.044 0.024 0.006
(0.010) (0.023) (0.022)

N 1428 1428 1428

Panel B. Top tercile

∆Predicted robot exposure 0.135 0.043 -0.009
(0.052) (0.060) (0.036)

N 652 652 652

Panel C. Top quartile

∆Predicted robot exposure 0.101 -0.042 -0.021
(0.049) (0.085) (0.048)

N 338 338 338

Panel D. Above median

∆Predicted robot exposure 0.025 0.003 -0.007
(0.014) (0.023) (0.023)

N 1413 1413 1413

Notes: The table presents the results from estimating the annual change in plant-level markdowns on the annual
change in the local labor market’s predicted exposure to robots in the automotive industry per 1,000 workers
for large firms between 1998 and 2018 using the IV (2SLS) regressions under various definition of large firms.
In Panels A-D, large firms are defined as those in the top 2 quintiles, top tercile, top quartile, and above the
median of the firm size distribution, respectively. Columns (1)-(3) report the effects of automation exposure on
the markdowns over heterogeneous workers performing different tasks, and the dependent variable is the annual
change in the markdowns over routine workers (column (1)), nonroutine manual–NRM workers (column (2)),
and nonroutine cognitive–NRC workers (column (3)). All specifications include the same set of controls and
fixed effects as in Table G.9. Standard errors clustered at the level of local labor markets or districts are in
parentheses.
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F.2 Additional Robustness of Firm-Level Results

The firm location can vary across the regions over time potentially due to the firm mobility across
districts or a firm can have multiple plants in different places with the same firm identification. So,
we can control for district fixed effects in addition to the firm fixed effects. Table F.2 shows the
robustness of IV (2SLS) estimates in Table 36 by adding district or kreis fixed effects. The results
from this robustness check are qualitatively and almost quantitatively similar to the baseline results.

Table F.2: Plant-Level Effects of Robot Exposure on Wage Markdowns in East and
West Germany (Controlling for District Fixed Effects)

Dependent variable:
Annual change in plant-level markdowns

Routine Nonroutine manual Nonroutine cognitive
(1) (2) (3)

Panel A. East Germany

∆Predicted robot exposure 0.011 -0.003 0.003
(0.005) (0.009) (0.008)

N 3649 3649 3649

Panel B. West Germany

∆Predicted robot exposure -0.002 0.013 -0.005
(0.004) (0.014) (0.006)

N 3823 3823 3823

Notes: Panel A presents the results from estimating the annual change in plant-level markdowns on
the annual change in the local labor market’s predicted exposure to robots in the automotive industry
per 1,000 workers in East Germany between 1998 and 2018 using the 2SLS IV regressions. Panel B
reports the results from the IV (2SLS) regressions for West Germany. In both panels, the dependent
variable is the annual change in plant-level markdowns for routine (column (1)), nonroutine manual
(column (2)), and nonroutine cognitive (column (3)) workers. All specifications control for constant,
six plant size groups based on the number of employees at the establishment in the previous year, and
demographic characteristics of districts or kreise in the previous year. The demographic controls are
constructed using the matched employer-employee data (LIAB) and include the share of females, the
share of foreigners, the share of workers over 50 years old, the shares of workers with no vocational
training, vocational training, and university degree, and employment shares across broad industries
(agriculture, food products, consumer goods, industrial goods, capital goods, construction, consumer-
related services, business-related services, and public sector). The local labor market characteristics
also contain the annual changes in exposure to net exports and ICT equipment. The firm, district, state-
by-year, and industry-by-year fixed effects are also controlled in each specification. Standard errors
clustered at the level of local labor markets or districts are in parentheses.
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G Additional Figures and Tables

G.1 Additional Figures

Figure G.1: Plant-Level Effects of Robot Exposure on Wages of Heterogeneous Workers at Large
and Small Firms in East and West Germany

(a) East Germany (b) West Germany

Notes: Panels (a) and (b) present the IV (2SLS) estimates on the effects of annual change in the local labor market’s
predicted exposure to robots in the automotive industry per 1,000 workers on the annual percentage change in average
wage at firms with different size in districts from East and West Germany, respectively, between 1998 and 2018. Small
firms are those in the bottom 7 deciles of the size distribution in the previous period, while large firms are plants in the
top 3 deciles. In all regressions, the dependent variable is the annual percentage change in the average wage of routine
workers, nonroutine manual (NRM) workers, and nonroutine cognitive (NRC) workers. All specifications include the
same set of controls and fixed effects as in Figure 14. Standard errors clustered by local labor market regions (kreise
or districts), and 95% confidence intervals are presented.
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Figure G.2: Plant-Level Effects of Robot Exposure on Employment of Heterogeneous Workers at
Large and Small Firms in East and West Germany

(a) East Germany (b) West Germany

Notes: Panels (a) and (b) present the IV (2SLS) estimates on the effects of annual change in the local labor market’s
predicted exposure to robots in the automotive industry per 1,000 workers on the annual percentage change in employ-
ment at firms with different size in districts from East and West Germany, respectively, between 1998 and 2018. Small
firms are those in the bottom 7 deciles of the size distribution in the previous period, while large firms are plants in the
top 3 deciles. In all regressions, the dependent variable is the annual percentage change in plant-level employment of
routine workers, nonroutine manual (NRM) workers, and nonroutine cognitive (NRC) workers. All specifications in-
clude the same set of controls and fixed effects as in Figure 14. Standard errors clustered by local labor market regions
(kreise or districts), and 95% confidence intervals are presented.
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Figure G.3: Plant-Level Effects of Robot Exposure on Wages of Heterogeneous Workers in East
and West Germany around the Great Recession

(a) East Germany (b) West Germany

Notes: Panels (a) and (b) present the IV (2SLS) estimates on the effects of annual change in the local labor market’s
predicted exposure to robots in the automotive industry per 1,000 workers on the annual percentage change in aver-
age wage at firms in districts from East and West Germany, respectively, before (1998-2008) and after (2009-2018) the
Great Recession. In all regressions, the dependent variable is the annual percentage change in the average wage of rou-
tine workers, nonroutine manual (NRM) workers, and nonroutine cognitive (NRC) workers. All specifications include
the same set of controls and fixed effects as in Table 36. Standard errors clustered by local labor market regions (kreise
or districts), and 95% confidence intervals are presented.
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Figure G.4: Distributions of Wage Markdowns for NRC, Routine, and NRMWorkers

Notes: Based on the IAB Establishment Panel and matched employer-employee (LIAB) data. The classification of non-
routine cognitive, routine, and nonroutine manual task-performing workers is based on the BIBB/BAuA Employment
Surveys. The figure depicts the markdown distributions for NRC, routine, and NRM in a given year over the period
1997-2018. NRC, nonroutine cognitive; NRM, nonroutine manual.
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Figure G.5: Distributions of Wage Markdowns for Workers with Different Skills

Notes: Based on the IAB Establishment Panel and matched employer-employee (LIAB) data. The figure depicts the
markdown distributions for high-skilled (with at least vocational training) and low-skilled (no vocational training) work-
ers every other year from 1997-2018.
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Figure G.6: 2SLS First-Stage Relationship (Robots in All Industries)

(a) Spain (b) France

(c) Italy (d) Norway

(e) Sweden (f) UK

Notes: These scatter plots show the first-stage relationship between the annual changes in exposure to industrial robots
in all industries for Germany and other high-income European countries between 1998 and 2018.
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G.2 Additional Tables

Table G.1: Summary Statistics for Labor Market Concentration (All Industries, 2018)

Mean Min Max 25th 75th fraction fraction
Pctile Pctile moderately highly

concentrated concentrated

Panel A. By Occupation × Region
Baseline geographical definition: 141 CZs
HHI (By 3-digit KldB 1988) 4243 34 10000 1357 6250 0.16 0.56

Alternative occupational definition:
HHI (By 3-digit KldB 2010) 3472 31 10000 950 5000 0.17 0.45
HHI (By 2-digit KldB 1988) 2980 40 10000 779 4286 0.18 0.39
HHI (By 2-digit KldB 2010) 1784 37 10000 446 2081 0.14 0.21
HHI (By 1-digit Blossfeld) 961 25 10000 277 1094 0.09 0.08

Alternative geographical definition:
HHI (By Kreis) 5246 37 10000 2000 10000 0.15 0.68
HHI (By 258 CZs) 4869 37 10000 1765 10000 0.15 0.64
HHI (By 42 regions) 2916 27 10000 698 4075 0.17 0.37
HHI (By Federal state) 2257 10 10000 422 3001 0.13 0.29

Panel B. By Industry × Region
Baseline geographical definition: 141 CZs
HHI (By 3-digit ISIC Rev.4) 4557 30 10000 1528 7812 0.15 0.61

Alternative industrial definition:
HHI (By 2-digit ISIC Rev.4) 3365 26 10000 885 5000 0.16 0.45

Alternative geographical definition:
HHI (By Kreis) 5552 43 10000 2356 10000 0.14 0.72
HHI (By 258 CZs) 5178 34 10000 2000 10000 0.15 0.68
HHI (By 42 regions) 3398 24 10000 797 5000 0.15 0.46
HHI (By Federal state) 2837 8 10000 562 4043 0.14 0.38

Notes: Based on data from the Employee History (BeH). The table shows summary statistics for the labor mar-
ket Herfindahl-Hirschman Index (HHI) under various market definitions using German matched employer-employee
(LIAB) data from the Federal Employment Agency. In the top panel, the baseline is calculated using 141 commuting
zones (CZs) for the geographic market definition and 3-digit KldB 1988 codes for the occupational market definition.
In the bottom panel, I use industry instead of occupation in the definition of labor market. The baseline is calculated
using 141 CZs for the geographic market definition and 3-digit ISIC Rev.4 (WZ2008) industry codes for the industrial
market definition. The calculation under alternative market definitions is done by changing the baseline along one
dimension. Note that regions are a cluster of kreis (or counties in the U.S.), and there are 42 regions in Germany.
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Table G.2: Summary Statistics (NRC, Routine, NRMWorkers)

NRC Routine NRM

Mean SD N Mean SD N Mean SD N
Log labor 2.298 1.473 7346 2.905 1.423 8686 1.941 1.436 5229
Labor cost (% revenue) 0.072 0.095 9849 0.158 0.123 9849 0.032 0.077 9849
Daily wage (€) 88.91 57.85 7336 74.25 39.76 8678 67.98 40.83 5225

Notes: The table summarizes the employment, labor cost, and daily wages for workers performing different tasks
between 1997-2018. The classification of workers is based on task intensity measures constructed using the BIB-
B/BAuA Employment surveys. Employment and wage bill information comes from the IAB Establishment Panel,
while daily wage comes from the matched employer-employee (LIAB) data. The unit of observation is the firm,
and sampling weights are applied. NRC, nonroutine cognitive; NRM, nonroutine manual.

Table G.3: Summary Statistics (High-skilled and Low-skilled Workers)

High-skilled Low-skilled

Mean SD N Mean SD N
Log labor 3.221 1.355 9563 1.979 1.483 6165
Labor cost (% revenue) 0.230 0.131 9957 0.032 0.073 9957
Daily wage (€) 78.83 43.53 9552 44.54 32.00 6157

Notes: The table summarizes the employment, labor cost, and daily wages for workers
with different skills between 1997-2018. High-skilled workers have vocational training
and university degrees, whereas low-skilled workers have no vocational training. Em-
ployment and wage bill information comes from the IAB Establishment Panel, while
daily wage comes from the matched employer-employee (LIAB) data. The unit of ob-
servation is the firm, and sampling weights are applied.
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Table G.4: Test of Relevance Assumption for Robots in All Industries

Dependent variable:
Annual change in aggregate markdowns

(1) (2) (3) (4)
∆Predicted robot exposure -0.0003 -0.0004 -0.0004 -0.0004

(0.0007) (0.0007) (0.0007) (0.0007)

Montiel Olea-Pflueger weak IV test
Effective F-statistic (α = 5%) 4.835 4.854 4.860 4.852
Critical value 2SLS (τ = 10%) 22.393 22.492 22.492 22.492
Critical value 2SLS (τ = 20%) 14.527 14.602 14.602 14.602
Critical value 2SLS (τ = 30%) 11.579 11.644 11.644 11.644

Kleibergen-Paap weak ID test 45.668 56.181 56.424 56.503
Hansen’s J-stat p-value 0.832 0.779 0.776 0.778

Year fixed effects X X X X
Broad region dummies X X X X
Demographics X X X X
Manufacturing share X
Broad industry shares X X X
∆Net exports in 1,000 euros per worker X X
∆ICT equipment in 1,000 euros per worker X

Notes: N = 4599 local labor market regions-by-year (district-by-year). The table presents results from the IV
(2SLS) regressions where the German local labor market’s exposure robots in all industries are instrumented by
installations of all robots in other high-income European countries. The table also tests the inclusion restriction
or relevance assumption in this case using Olea and Pflueger’s (2013) and Kleibergen and Paap’s (2006) weak
IV tests. All specifications control for constant, broad region dummies, year fixed effects, and demographic
characteristics of districts or kreise in the previous period. The broad region dummies indicate if the region
is located in the north, west, south, or east of Germany. The demographic controls are constructed using the
matched employer-employee data (LIAB) and include the share of females, the share of foreigners, the share of
workers over 50 years old, the shares of workers with no vocational training, vocational training, and university
degree, and employment shares across industries. The manufacturing share represents the employment share
of manufacturing workers in total employment. Broad industry shares are the shares of workers in nine broad
industry groups (agriculture, food products, consumer goods, industrial goods, capital goods, construction,
consumer-related services, business-related services, and public sector). Exposure to net exports and ICT
equipment is measured by the annual change in German net exports vis-à-vis China and 21 Eastern European
countries (in 1,000 euros per worker) and by the annual change in German ICT equipment (in 1,000 euros per
worker), respectively. Standard errors clustered at the level of local labor markets or districts are in parentheses.
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Table G.5: Plant-Level Effects of Robot Exposure on Employment of Heterogeneous
Workers in East and West Germany

Dependent variable:
Annual % change in plant-level employment

Routine Nonroutine manual Nonroutine cognitive
(1) (2) (3)

Panel A. East Germany

∆Predicted robot exposure -0.016 -0.013 0.022
(0.004) (0.006) (0.006)

N 3649 3649 3649

Panel B. West Germany

∆Predicted robot exposure -0.001 -0.017 0.006
(0.008) (0.014) (0.008)

N 3823 3823 3823

Firm characteristics X X X
Regional demographics X X X
Firm fixed effects X X X
State-by-Year fixed effects X X X
Industry-by-Year fixed effects X X X

Notes: Panel A presents the results from estimating the annual percentage change in employment at the
plant on the annual change in the local labor market’s predicted exposure to robots in the automotive
industry per 1,000 workers in East Germany between 1998 and 2018 using the IV (2SLS) regressions.
Panel B reports the results from the 2SLS IV regressions forWest Germany. In both panels, the dependent
variable is the annual percentage change in plant-level employment of routine (column (1)), nonroutine
manual (column (2)), and nonroutine cognitive (column (3)) workers. All specifications include the same
set of controls and fixed effects as in Table 33. Standard errors clustered at the level of local labor markets
or districts are in parentheses.
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Table G.6: Plant-Level Effects of Robot Exposure on Employment of Heterogeneous Workers
in Districts from East and West Germany with Different Union Coverage

Dependent variable:
Annual % change in plant-level employment

Bottom 8 deciles Top 2 deciles

Routine NRM NRC Routine NRM NRC
(1) (2) (3) (4) (5) (6)

Panel A. East Germany

∆Predicted robot exposure -0.012 -0.012 0.005 -0.013 -0.023 0.076
(0.006) (0.007) (0.008) (0.015) (0.028) (0.024)

N 3149 3149 3149 224 224 224

Panel B. West Germany

∆Predicted robot exposure 0.008 0.001 -0.015 -0.008 0.000 0.003
(0.009) (0.014) (0.017) (0.006) (0.004) (0.004)

N 3273 3273 3273 182 182 182

Firm characteristics X X X X X X
Regional demographics X X X X X X
Firm fixed effects X X X X X X
State-by-Year fixed effects X X X X X X
Industry-by-Year fixed effects X X X X X X

Notes: The left sub-panel of Panel A presents the results from estimating the annual percentage change in employ-
ment at the plant on the annual change in the local labor market’s predicted exposure to robots in the automotive
industry per 1,000 workers in districts from East Germany whose union coverage is in the bottom eight deciles of
the distribution in the previous period between 1998 and 2018 using the IV (2SLS) regressions. The right sub-panel
of Panel A reports the results from the IV (2SLS) regressions for plants in districts from East Germany with high
union coverage (i.e., districts in the top two deciles of the distribution of district-level union coverage). Panel B’s
left and right sub-panels show the corresponding results for West Germany. In all panels, the dependent variable
is the annual percentage change in plant-level employment of routine workers (columns (1) and (4)), nonroutine
manual–NRM workers (columns (2) and (5)), and nonroutine cognitive–NRC workers (columns (3) and (6)). All
specifications include the same set of controls and fixed effects as in Table 33. Standard errors clustered at the level
of local labor markets or districts are in parentheses.
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Table G.7: Plant-Level Effects of Robot Exposure on Wages of Heterogeneous
Workers in East and West Germany

Dependent variable:
Annual % change in plant-level average wage

Routine Nonroutine manual Nonroutine cognitive
(1) (2) (3)

Panel A. East Germany

∆Predicted robot exposure -0.005 -0.001 -0.006
(0.003) (0.004) (0.007)

N 3649 3649 3649

Panel B. West Germany

∆Predicted robot exposure -0.005 0.013 0.016
(0.010) (0.015) (0.015)

N 3823 3823 3823

Firm characteristics X X X
Regional demographics X X X
Firm fixed effects X X X
State-by-Year fixed effects X X X
Industry-by-Year fixed effects X X X

Notes: Panel A presents the results from estimating the annual percentage change in average wage at
the plant on the annual change in the local labor market’s predicted exposure to robots in the automotive
industry per 1,000 workers in East Germany between 1998 and 2018 using the IV (2SLS) regressions.
Panel B reports the results from the 2SLS IV regressions forWest Germany. In both panels, the dependent
variable is the annual percentage change in the average wage of routine (column (1)), nonroutine manual
(column (2)), and nonroutine cognitive (column (3)) workers. All specifications include the same set of
controls and fixed effects as in Table 34. Standard errors clustered at the level of local labor markets or
districts are in parentheses.
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Table G.8: Plant-Level Effects of Robot Exposure on Wages of Heterogeneous Workers in
Districts from East and West Germany with Different Union Coverage

Dependent variable:
Annual % change in plant-level average wage

Bottom 8 deciles Top 2 deciles

Routine NRM NRC Routine NRM NRC
(1) (2) (3) (4) (5) (6)

Panel A. East Germany

∆Predicted robot exposure -0.001 -0.004 0.011 -0.011 0.009 -0.025
(0.007) (0.005) (0.007) (0.018) (0.025) (0.018)

N 3149 3149 3149 224 224 224

Panel B. West Germany

∆Predicted robot exposure -0.002 -0.005 0.035 0.001 -0.003 0.015
(0.020) (0.012) (0.016) (0.006) (0.003) (0.011)

N 3273 3273 3273 182 182 182

Firm characteristics X X X X X X
Regional demographics X X X X X X
Firm fixed effects X X X X X X
State-by-Year fixed effects X X X X X X
Industry-by-Year fixed effects X X X X X X

Notes: The left sub-panel of Panel A presents the results from estimating the annual percentage change in average
wage at the plant on the annual change in the local labor market’s predicted exposure to robots in the automotive
industry per 1,000 workers in districts from East Germany whose union coverage is in the bottom eight deciles of
the distribution in the previous period between 1998 and 2018 using the IV (2SLS) regressions. The right sub-panel
of Panel A reports the results from the IV (2SLS) regressions for plants in districts from East Germany with high
union coverage (i.e., districts in the top two deciles of the distribution of district-level union coverage). Panel B’s left
and right sub-panels show the corresponding results for West Germany. In all panels, the dependent variable is the
annual percentage change in the average wage of routine workers (columns (1) and (4)), nonroutine manual–NRM
workers (columns (2) and (5)), and nonroutine cognitive–NRC workers (columns (3) and (6)). All specifications
include the same set of controls and fixed effects as in Table 34. Standard errors clustered at the level of local labor
markets or districts are in parentheses.
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Table G.9: Heterogeneous Effects of Robot Exposure on Plant-Level
Markdowns by Firm Size

Dependent variable:
Annual change in plant-level markdowns

All workers
Heterogeneous workers

Routine NRM NRC
(1) (2) (3) (4)

Panel A. Small firms

∆Predicted robot exposure 0.001 -0.000 0.020 -0.002
(0.008) (0.008) (0.011) (0.012)

N 4833 4833 4833 4833

Panel A. Large firms

∆Predicted robot exposure 0.015 0.015 0.008 -0.003
(0.020) (0.021) (0.015) (0.010)

N 3714 3714 3714 3714

Notes: The table presents the results from estimating the annual change in plant-level markdowns
on the annual change in the local labor market’s predicted exposure to robots in the automotive
industry per 1,000 workers for small (top panel) and large (bottom panel) firms between 1998 and
2018 using the IV (2SLS) regressions. Small firms are those in the bottom 7 deciles of the size
distribution in the previous period, while large firms are plants in the top 3 deciles. Column (1)
shows the effects for all workers. Columns (2)-(4) report the effects of automation exposure on the
markdowns over heterogeneous workers performing different tasks, and the dependent variable is
the annual change in the markdowns over routine workers (column (2)), nonroutine manual–NRM
workers (column (3)), and nonroutine cognitive–NRC workers (column (4)). All specifications
control for constant and demographic characteristics of districts or kreise in the previous year.
The firm, state-by-year, and industry-by-year fixed effects are also controlled in each specification.
Standard errors clustered at the level of local labor markets or districts are in parentheses.
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Table G.10: Relationship between Robot Exposure, Robot Exposure Predicted from the
First-Stage of 2SLS, and Actual Robot Adoption

(1) (2) (3)
Panel A. Dependent variable: ∆Robot exposure

Robot exposure predicted from the first-stage 0.630 0.350 0.362
(0.054) (0.063) (0.063)

N 1023 1021 1011
R2 0.41 0.77 0.80

Panel B. Dependent variable: ∆Actual robot adoption

∆Robot exposure predicted from the first-stage 0.013 -0.035 -0.051
(0.074) (0.060) (0.057)

N 815 811 803
R2 0.04 0.49 0.52

Year fixed effects X X
State fixed effects X
District fixed effects X X
State-by-Year fixed effects X

Notes: The table presents the results from OLS regressions estimating the relationship between the annual
change in robot exposure predicted from the first stage of the 2SLS estimation and annual change in robot
exposure defined by equation (5) (top panel) and annual change in actual robot adoption (bottom panel) in
Germany between 2015 and 2018. In this table, robots in all industries are considered. The first-stage re-
gression controls for instruments and covariates in equation (4). The actual robot adoption is measured by
aggregating the number of robots adopted by the firm at the district level using sampling weights provided in
the IAB Establishment Panel data and expressed as per 1,000 workers. Standard errors clustered by districts
are in parentheses. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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