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Abstract 

The absence of a reliable and accurate national sampling frame represents a significant methodological 
constraint in conducting representative national surveys. This limitation undermines policy and research 
efforts in many developing countries, particularly those facing substantial internal displacement and 
relocation due to territorial challenges and conflicts. This paper addresses this challenge by developing 
Armenia’s first digitized national sampling frame—a country where reliable and accessible sampling frames 
for household and individual surveys are severely constrained. The study begins by reviewing existing 
national sampling frames and highlighting their scientific and logistical limitations. It then proposes efficient 
tools, geospatial techniques, and datasets for developing urban and rural classification suitable for surveys, 
as well as digitized pre-census enumeration areas, which can be used as a national sampling frame. The 
proposed methods and strategies offer several innovations and advantages over traditional approaches. First, 
the process of creating a digitized national sampling frame is fully automated. As a result, the digitization of 
Armenia's pre-census enumeration areas was completed in less than three months with limited resources, 
whereas a manual process would have taken years and required significant financial investment. Second, all 
input datasets were publicly available, which is crucial for scaling the method to other countries. Third, 
because the process is computer-based, the resulting output is free from the geometric errors often associated 
with manual methods. Fourth, the population parameter is derived from gridded population data, which 
accounts for recent urban changes and migration, thereby maximizing the representativeness of the results. 
The results show that the urban-rural classification population total strongly correlates with the 2011 census 
outputs. The pre-enumeration area (preEA) boundaries align with international standards, including nesting 
within administrative boundaries and aligning with visible ground features such as roads, rivers, and 
infrastructure. This new sampling frame was successfully applied to the World Bank’s “Listening to Armenia” 
survey, showcasing its potential for other socioeconomic surveys in the country. Furthermore, the method 
can be utilized to efficiently generate and update national sampling frames in other countries. 
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1 Introduction 

A national sampling frame, which includes primary sampling units (PSUs) such as enumeration areas derived 
from a recent census, is vital for collecting reliable and representative data. However, national sampling 
frames face several critical challenges globally, especially in developing countries and conflict-affected regions 
where conducting representative surveys is crucial for high-quality research and policy analysis with minimal 
bias. Many countries, including the Republic of Armenia, rely on national sampling frames based on census 
enumeration areas from previous population censuses. These frames, however, are often outdated, non-
digital, incomplete, and difficult to access, limiting their use to local government organizations while 
excluding researchers, academics, and international organizations. This issue is particularly acute in Armenia, 
where the recent large-scale refugee crisis and significant shifts in population distribution due to the 
Nagorno-Karabakh conflict have further compounded these challenges (Gale et al. 2023). Consequently, the 
lack of accessible, up-to-date population sampling frames undermines efforts to conduct surveys for 
statistical, policy, and research purposes. 

The digital national sampling frame is typically based on three sources: census enumeration areas (EAs), sub-
national administrative boundaries, and a gridded population sampling frame. A census is conducted every 
5 to 10 years, depending on financial and administrative costs, and the nature of the census questions. For 
instance, Armenia’s sampling frame relies on the 2011 Census, which is now severely outdated due to 
demographic changes resulting from population displacements and mobility across regions caused by 
territorial conflicts. In 2022, the Committee of the Republic of Armenia (ArmStat) conducted a Population 
Census using a combined approach of administrative data and a sampled census, offering a potential up-to-
date national sampling frame (ARMSTAT, 2022). However, due to the COVID-19 pandemic, the census 
was conducted in a hybrid format, as was the case in many countries. This frame, based on a sample of 25% 
of the addresses in the State Population Register (SPR), is restrictive and largely inaccessible (ARMSTAT, 
2022). Several attempts have been made to access the State Population Register (SPR) but failed to obtain 
the sampling frame based on SPR addresses. Since this dataset is not readily available, it is essential to find 
an alternative methodology to update the data from the previous census. 

One of the early techniques to address this challenge is grid sampling, where cells—rectangular areas with 
population estimates—serve as PSUs. The sampling frame relies on millions of grid cells, which are publicly 
available from various data sources, such as WorldPop (WorldPop, 2025), Geo-Referenced Infrastructure 
and Demographic Data for Development (GRID3) (GRID3, 2025), Global Human Settlement Layer (GHS-
POP) (Global Human Settlement Layer, 2025), Gridded Population of the World version 4 (GPWv4) 
(International Union for the Scientific Study of Population Toggle menu, 2025), High Resolution Settlement 
Layer (HRSL) (Meta and CIESIN, 2025), LandScan Global (Lebakula et al., 2024), LandScan HD (Weber et 
al., 2017),  accessible through platforms like Google Earth Engine. The grid size varies depending on the 
data source, and the selection of grid size and data provider can differ from one country to another. However, 
grid sampling comes with several challenges. First, grid boundaries are often unnatural, cutting through 
buildings and disregarding visible geographic features (Qader et al., 2021). Second, although the spatial size 
of grids is uniform, the population size within each grid can vary significantly. As a result, sparsely populated 
grids may need to be collapsed, while densely populated grids require segmentation (Qader et al., 2020, 2021). 
Over recent decades, several methodological approaches and tools have been developed to create gridded 
population sampling frameworks (Cajka et al., 2018; Qader et al., 2020; Thomson et al., 2020). 

Other researchers and surveyors have utilized other geospatial techniques and datasets to develop various 
national sampling frames tailored to their specific needs and objectives. Kassié et al. (2017) outline a sampling 
protocol for a health survey in Bobo-Dioulasso, Burkina Faso, using urban typology based on infrastructure 
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and satellite imagery. The method surveyed 1,045 households, providing an alternative approach for areas 
with limited data. In the context of a hard-to-reach and mobile population, a random geographic cluster 
sample (RGCS) was explored to address undercoverage in household surveys in Ethiopia, by selecting 
random points and interviewing all eligible respondents within designated circles (Himelein et al. 2014). A 
community-based survey was conducted using area-based stratified random sampling and geospatial 
technology to examine social determinants of health and their association with obesity prevalence among 
Hispanics and non-Hispanic whites in a rural Southeastern U.S. community (Howell et al. 2020). The lack of 
translation of these methods into user-friendly tools, along with challenges in their reproducibility in certain 
contexts, presents difficulties in replicating these methods in other countries, especially in regions where 
geospatial skills are limited. Therefore, enhancing geospatial capacity and developing user-friendly tools is 
crucial to fully leverage geospatial techniques, ensuring the creation of more accurate and representative 
sampling frames.   

This paper begins by systematically assessing the existing sampling frames in Armenia, with a particular focus 
on those utilizing census settlements—villages in rural areas, towns in urban areas, districts in the capital city, 
Yerevan—and electoral precincts as primary sampling units (PSUs). It evaluates the strengths and limitations 
of these sampling frames, offering potential solutions to address the challenges and shortcomings identified. 
To overcome the limitations of the existing national sampling frames, this paper proposes an innovative 
national sampling frame based on pre-census enumeration areas (pre-EAs), employing a novel approach 
alongside the most recent population estimates. 

This paper presents Armenia’s first digital national sampling frame, successfully developed using a range of 
innovative geospatial techniques and datasets. Additionally, multiple datasets and maps have been produced 
to support ground survey data collection. The proposed national sampling frame, where primary sampling 
units (PSUs) or enumeration areas (EAs) are automatically created, offers several advantages over traditional 
sampling frames (Qader et al., 2021). Firstly, the EAs are designed with natural boundaries such as streets 
and rivers, ensuring they align with geographic features. Secondly, administrative boundaries are strictly 
adhered to, as the EAs are nested within these boundaries by design. While some automatically generated 
boundaries can be unnatural, they are not cutting houses and structures, and the automatic creation of EAs 
minimizes geometric errors (such as pockets, disjoint sections, and overlaps), making the process significantly 
more resource-efficient compared to manual creation by cartographers. Thirdly, the population estimates 
within the EAs are generally homogeneous, avoiding extremes in size, although some further adjustments 
may be necessary. Although basic comparisons were made to assess gridded population outputs, a 
comprehensive validation of gridded population estimates is outside the scope of this paper due to limitations 
in data, time, and resources. 

The datasets used to create the semi-automatic mapping of pre-EAs include high-resolution gridded 
population data, the spatial distribution of settled areas, and publicly available natural and administrative 
boundaries from various sources, such as OpenStreetMap (OSM) and WorldPop. Cross-validation exercises 
have been carried out to assess the applicability of the proposed sampling frame and compare it with other 
existing frames in the country. These datasets include: (i) the 2011 Census with spatial information on regions 
(marzes) and settlement types (urban or rural), (ii) census settlements based on the 2011 Census, (iii) 2023 
electoral precincts, and (iv) additional population data from ArmStat at the aggregate level, including marz-
settlement type (urban and rural regions). 

This paper makes several contributions to the literature and the field of survey sampling. First, it presents a 
national sampling frame for Armenia based on pre-census enumeration areas (pre-EAs), demonstrating the 
applicability of a semi-automated spatial technique that could benefit other countries. The method has been 
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implemented and tested in countries such as Somalia, which lacks a digital national sampling frame (Qader 
et al., 2020, 2021), Cameroon, which requires a customized national sampling frame for refugees (Darin et 
al. 2024), the Democratic Republic of Congo (Qader et al., 2023), and Burkina Faso (Qader et al., 2022). 
However, this is the first application of the tool in Central Asia. Second, the national sampling frame 
developed in this paper contributes to survey data collection in Armenia. The use of multiple sampling frames 
in the country often makes it difficult for researchers, policymakers, and others to compare results across 
surveys. By providing a unified, standardized sampling frame based on publicly available datasets, this paper 
helps ensure consistency across surveys and avoids discrepancies in population estimates, offering a 
methodological contribution to the field. Third, the rigorous evaluation of various sampling frames, including 
the new national sampling frame, contributes to the survey sampling literature and practice in Armenia. To 
the best of our knowledge, no study has yet systematically compared various sampling frames in Armenia. 
This new sampling frame does not replace existing frames but can complement them, particularly the national 
census frame, offering an alternative approach. Finally, this work highlights the value of public datasets such 
as OpenStreetMap. The availability of high-quality, public geospatial data can generate substantial societal 
value, potentially amounting to tens or even hundreds of millions of dollars, even before considering indirect 
benefits (Hansen and Schrøder, 2019). 

2 Existing and Accessible Sampling Frames  

The household survey is one of the most widely used methods for gathering population and socioeconomic 
data (United Nations (UN) 2005); United Nations Children’s Fund (UNICEF) 2012). To ensure the accuracy 
of these surveys, a reliable sampling frame is essential at the national level. These frames are typically 
established and updated during national housing and population censuses. However, some countries lack a 
digital national sampling frame due to non-digitized censuses or, in more extreme cases, may not even have 
a physical map of the census frame, or it may be inaccessible. Furthermore, these frames often become 
outdated because demographic factors evolve quickly, and most censuses are conducted every ten years. 

In Armenia, there is no functional or accessible map or cartographic information that can be used for a 
national sampling frame, posing a significant barrier to conducting nationally representative socioeconomic 
surveys. In addition, the country does not currently have an up-to-date and digitized national sampling frame. 
The last census conducted in Armenia was in 2011 (ARMSTAT, 2024), and there are no up-to-date 
enumeration areas available for use as national sampling frames for representative socioeconomic surveys. 
The spatial resolution of the census data in use today is limited to the provincial or district level (2nd and 
3rd administrative units), making it difficult to determine how people are distributed at finer scales, such as 
the facility, sub-district, or neighbourhood levels—where most policy interventions typically occur. 

In developing countries, creating a sampling frame for surveys that includes representative community 
samples usually involves manually delineating small geographic areas (or enumeration areas) on high-
resolution satellite imagery. While this method is commonly employed by National Statistical Offices (NSOs), 
it is logistically complex and requires substantial resources, including Geographic Information System (GIS) 
experts and extensive training (Qader et al., 2020, 2021). Additionally, this process is both time-consuming 
and expensive, often resulting in delays to the survey. For instance, it can take two to three years to complete 
a survey (Grosh and Glewwe, 1995). These challenges highlight the need for a faster and more cost-effective 
approach to sampling frame and population enumeration methodologies. 

Before discussing the new sampling frame, an overview of the existing sampling frames in the country is 
provided. Three datasets have been identified as potential sources for developing a national sampling frame 
for household surveys: the 2022 Census with addresses from the State Population Register (SPR), the 2011 
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Census with settlement data (villages in rural areas, towns in non-Yerevan urban regions, and districts in 
Yerevan), and 2023 election data with electoral precincts. 

The ArmStat conducted a Population Census in November 2022, employing a combined approach based on 
administrative data from the State Population Register (SPR) and a 25% sample of SPR addresses 
(ARMSTAT, 2022). In this dataset, primary sampling units (PSUs) correspond to the workload of SPR 
addresses assigned to each enumerator during the census. While these PSUs lack the identifiable boundaries 
of traditional census enumeration areas (EAs), they can still serve as a sampling frame since they cover 
approximately 93% of all addresses in the country. The household listings in this dataset were last updated 
in October 2022, although the addresses are distant due to the large size of the EAs. Despite its strengths, 
this frame is inaccessible, as the data is only available on a restricted computer at ArmStat (Pettersson, 2023). 

Given these challenges, this paper focuses on the latter two datasets: the 2011 settlement-based frame and 
the 2023 electoral precinct-based frame. Their respective advantages and limitations are discussed in detail. 

2.1 Census Settlements 

The most granular spatial information available in this dataset is at the “settlement” level. There are 1,037 
settlements (980 villages, 45 towns, and 12 districts in Yerevan). One of the key advantages of this sampling 
frame is that it identifies over 1,000 distinct geographical areas, which is more granular than simply using 
regions or marzes. 

A key challenge with this dataset is its heterogeneous spatial coverage units. Suppose that 400 settlements 
were selected in the first stage of the two-stage stratified cluster sampling design as primary sampling units 
(PSUs). Given the large populations in the 12 districts of Yerevan, it is likely that all districts will be selected 
using a probability proportional to size (PPS) approach. If 10 households were randomly selected from each 
district in the second stage, the sample size from Yerevan would total 120 households, which represents only 
3% of the total sample of 4,000 households. However, according to the 2011 Armenia Census, Yerevan 
accounts for approximately 35% of the population and 38% of the total households. One can select a 
disproportionate number of households from each PSU in the second stage to account for the variations in 
the size of the PSUs in the first stage. For example, selecting 100 households from each district in Yerevan 
would yield 1,200 households from Yerevan, which is 30% of the sample. 

However, a notable drawback of this frame is the presence of large settlements, particularly in Yerevan. 
While identification information is unavailable, the Census frame from the Committee of the Republic of 
Armenia (ArmStat) includes approximately 12,000 enumeration areas, which means settlements in this frame 
are, on average, 12 times larger than the Census enumeration areas. Using large primary sampling units 
(PSUs) in this manner could undermine the integrity of the two-stage sampling design, effectively reducing 
it to a one-stage design. Large settlements must be subdivided into smaller and more manageable PSUs to 
resolve this. In the past, large PSUs have been manually segmented into smaller units, as demonstrated in 
Nepal (Central Bureau of Statistics of Nepal, 1996); however, this traditional approach is both costly and 
time-consuming. This paper proposes an innovative technique for dividing these large areas into smaller, 
more practical units. 

Another issue with this potential sampling frame is that the population data based on the 2011 Census is 
outdated and misallocated. While outdated data typically is not a major concern for national sampling frames 
(since any survey conducted before the 2022 Armenia Census could use the 2011 Census frame), it presents 
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a more significant problem in Armenia, where household displacement and domestic migration due to 
territorial conflicts have been substantial in recent years (Gale et al. 2023). As a result, the current population 
distribution may differ significantly from that recorded in the 2011 Census. To address this, population data 
can be updated using population growth rates at more aggregate levels. If updates are made at a finer level 
than administrative units, the population distribution across areas can be adjusted to better reflect the current 
reality. However, any adjustments at the administrative unit level or more aggregate levels, such as regions, 
would not alter the probability of a PSU being selected in the first stage of the PPS process. Since PPS 
selection is based on administrative units, any monotonic transformation of PSU size within these units 
would not affect the selection probability. Therefore, adjustments to population and household data should 
be made at a level more granular than administrative units to ensure the integrity of the sampling process. 

2.2 Electoral Precincts 

The confidential microdata on electoral precincts is originally sourced from the Central Election Committee 
of Armenia. There are two main advantages to using this dataset as a sampling frame for household surveys. 
First, the data is regularly updated and reflects current information. Second, with 1,992 electoral precincts, 
the dataset exceeds the 1,037 settlements in the 2011 Census settlement data. As a result, the spatial 
information is more granular than that provided by the 2011 Census, and issues related to a few large-sized 
PSUs are less pronounced compared to a sampling frame based on census settlements. However, similar to 
the “settlements” in the 2011 Census data, using electoral precincts as primary sampling units (PSUs) also 
presents challenges related to large-sized PSUs. It is important to note that there are also smaller electoral 
precincts, which are less problematic. As noted in Pettersson (2023), the size of voting point areas in Armenia 
ranges from 7 addresses to 1,200 addresses. Smaller voting point (VP) areas can be merged with neighbouring 
areas, while larger VP areas can be divided into smaller segments. The process of merging smaller VP areas 
should be relatively straightforward, but segmenting large areas may incur additional costs, as it requires 
spatial analysis and likely some cartographic work. 

Additionally, the boundaries of primary sampling units (PSUs) are crucial to ensure that enumerators do not 
exceed the targeted area. This feature is lacking in both sampling frames discussed in this section, as no 
boundaries (neither digital nor physical) are available for the Census settlements or electoral precincts. 
However, this is a more significant issue for the precinct-based sampling frame, as precincts are relatively 
smaller in size compared to settlements. As a result, the likelihood of enumerators inadvertently entering 
neighbouring, non-selected PSUs is higher for precincts. In the case of very small electoral precincts, 
enumerators may stray outside the designated area if they are not provided with proper maps during 
fieldwork. 

The advantages and disadvantages of a sampling frame based on the 2023 electoral precincts indicate that it 
is relatively more favourable than the frame based on the 2011 Census settlements. Consequently, the 2023 
electoral precincts have been further evaluated as a sampling frame for representative individual- and 
household-level surveys, with an exploration of the data on electoral precincts. The size of each electoral 
precinct is measured by the number of voters or the adult population, excluding children or individuals under 
18 years old. Table 1 illustrates the distribution of strata size using both the total and adult populations. The 
stratum is defined as a combination of marz and settlement type—urban or rural status, as seen in other 
official surveys like Armenia’s Demographic and Health Survey (DHS) (National Statistical Service et al., 
2017). The 2022 population data at the strata level is sourced from the Committee of the Republic of Armenia 
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(ArmStat).1 The total population in 2022, as shown in Column 1, is 2.977 million. Column 2 displays the 
2023 number of voters (adult population aged 18 or older) based on the electoral precinct-based sampling 
frame. Column 3 shows the difference between the total population and the adult population over subsequent 
years. Although the two population figures correspond to different years, some irregularities are observed, 
such as the adult population exceeding the total population by approximately 11,000 people in rural areas of 
Lori. 

Table 1: Population and number of voters across strata 

Marz name Settlement 
type Strata ID 

Population 
(2022 ArmStat 

data) 

Number of voters 
(18 or older, 2023 

election data) 

Difference 
between total and 
adult population 

(1) (2) (3) = (1) - (2) 
Aragatsotn Urban 1 26,738 27,847 -1,109 
Aragatsotn Rural 2 98,949 82,622 16,327 
Ararat Urban 3 72,294 56,730 15,564 
Ararat Rural 4 186,983 150,805 36,178 
Armavir Urban 5 82,953 76,205 6,748 
Armavir Rural 6 183,703 137,823 45,880 
Gegharkunik Urban 7 65,902 61,823 4,079 
Gegharkunik Rural 8 162,809 109,803 53,006 
Kotayk Urban 9 137,493 126,680 10,813 
Kotayk Rural 10 116,364 94,876 21,488 
Lori Urban 11 124,050 134,962 -10,912 
Lori Rural 12 87,532 76,157 11,375 
Shirak Urban 13 133,620 128,691 4,929 
Shirak Rural 14 96,856 77,832 19,024 
Syunik Urban 15 90,205 65,044 25,161 
Syunik Rural 16 44,350 33,042 11,308 
Tavush Urban 17 49,859 39,214 10,645 
Tavush Rural 18 69,943 58,907 11,036 
Vayots Dzor Urban 19 16,160 16,811 -651 
Vayots Dzor Rural 20 31,501 25,678 5,823 
Yerevan Urban 21 1,098,866 824,317 274,549 
Armenia    2,977,130 2,405,869 571,261 

Notes: Column (2) presents the precinct data aggregated at the strata level. The 2023 election data on the number of 
voters or adult population and other spatial information are sourced from the Central Electoral Commission of 
Armenia. 

As shown in Column 2 of Table 1, the total number of voters or the adult population is 2.405 million, which 
is quite close to the total population. This suggests that approximately 19% of the population is composed 
of children under 18 years old. However, other datasets indicate that children under 18 make up around 23-
24% of Armenia’s population. To further investigate this, the total adult population across various official 
data sources was examined for comparison. Table 2 presents the findings. According to the 2011 Armenia 
Census, the adult population share (aged 18 and older) is 77%, while the adult population share derived from 
a combination of the 2022 World Bank data (for the 0-14 age group) and the 2011 Armenia Census (for the 
15-17 age group) is 76%. This suggests that the election data overestimated the adult population by 
approximately 4-5%. Despite these discrepancies, the PSU size based on the number of adults or voters does 

 

1 See https://armstat.am/file/doc/99538403.xlsx for the urban population and https://armstat.am/file/doc/99538413.xlsx for 
the rural population data at the region level in Armenia over time. 
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not pose a significant issue, as the total and adult populations across strata or administrative units are strongly 
and positively correlated, with a correlation coefficient of ρ = 0.996 (p-value = 0.000). 

Table 2: Share of adult population in different datasets 

  

Adult population 
(18 or older, 2011 
Armenia Census) 

Adult population 
(18 or older, 2022 World Bank data and 

2011 Armenia census) 

Number of voters 
(18 or older, 2023 

election data) 
(1) (2) (3) 

Share in total population 77% 76% 81% 

Notes: The 2011 Census data used in Column 1 reports age-specific population, and the share of the population with 
18 or older is shown. 

In addition to the absolute value of PSU size, the distribution of the size measure across PSUs is also crucial. 
Figure 1 illustrates the distribution of the 2023 adult population across electoral precincts. Ideally, PSUs 
should be of equal size, or the PSU sizes should be evenly distributed across the sample frame. Population 
data from census frames typically follows a normal distribution, with few very small or large PSUs. However, 
the distribution of voters across electoral precincts in this case is U-shaped. The precinct size ranges from 
10 to 2,061 voters, with a mean size of 1,208 and a median size of 1,399. This distribution highlights the 
need for merging and segmentation to make the electoral precinct-based frame more workable, aligning with 
the distribution of households observed in Pettersson (2023). 

 
Figure 1: The distribution of voters or adult population across electoral precincts in Armenia in 2023 

Finally, major and official surveys, such as the Demographic and Health Survey (DHS) for Armenia, rely on 
sample frames based on enumeration areas, rather than electoral precincts. Table 3 provides a summary of 
the sampling frames used in major surveys across Armenia. The absence of a usable and accessible sample 
frame based on enumeration areas highlights the need for a workable and up-to-date national sampling frame 
in the country. Therefore, given the limitations of the existing sample frames, this paper proposes the 
development of a national sampling frame based on pre-census enumeration areas (pre-EAs) in Armenia, 
which offers a conceptual improvement over the existing sampling frames evaluated in this section. 
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Table 3: Sampling frames of major surveys in Armenia 

Surveys PSUs in the sampling frames 
Demographic and Health Survey (DHS) Enumeration areas in the Armenia Population and Housing Census 
Integrated Living Conditions Survey (ILCS) Population census enumeration areas 
UNICEF Multiple Indicator Cluster Survey 

(MICS, first ever in Armenia) 
Currently in search of a suitable sampling frame 

Notes: The PSUs stand for primary sampling units. 

3 Data and Methods 

The preEA production process involves several stages. First, various geospatial datasets were obtained and 
pre-processed. Next, urban and rural areas across the country were classified. The preEA tool was then 
applied to generate the preEA boundaries. Finally, both automatic and manual processes were used to post-
process the preEA boundaries and validate them. Figure 2 illustrates the overall process involved in 
producing the national sampling frame in Armenia for this study. 

 
Figure 2: Schematic diagram of the semi-automated enumeration area (EA) delineation process in Armenia 

3.1 Input Datasets 

This section outlines the datasets sourced from various organizations to establish the national sampling frame 
and facilitate field data collection in Armenia. 
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3.1.1 Gridded Population 

The gridded population data for Armenia was obtained from WorldPop (Bondarenko et al., 2020) and is 
based on the 2020 population census or projection-based estimates for that year. This dataset provides an 
estimated total population per grid cell (shown in panel (a) of Figure 3). The data is available at a resolution 
of 3 arcseconds (approximately 100 meters at the equator) and can be downloaded in GeoTIFF format with 
the Geographic Coordinate System, WGS84 projection. The population estimate is represented in the units 
of one pixel. Regions marked with “NoData” indicate areas classified as unpopulated according to the Built-
Settlement Growth Model (BSGM) developed by Nieves et al. (2020). The WorldPop gridded population 
dataset was generated by disaggregating projected subnational population totals into grid cells using machine 
learning techniques, incorporating various geospatial layers derived from satellite imagery (Stevens et al., 
2015). 

3.1.2 Digitized Features Visible from the Ground 

The boundaries of enumeration areas (EAs) should align with prominent visible ground features to facilitate 
effective ground-based data collection. To ensure that the pre-EA boundaries meet these criteria during the 
automatic creation of the national sample frame in Armenia, extensive digitized ground features are required. 
These features, both natural and human-made, are primarily sourced from OpenStreetMap (OSM) 
(Geofabrik 2025). Panel (b) of Figure 2 displays information from the OSM dataset, including road networks, 
waterways, and railways. This data offers modifiable and updatable inputs, allowing for multiple iterations of 
EA generation. The figure illustrates the input datasets, where the two datasets have not yet been combined. 
Subsequent figures demonstrate how these input datasets are used to divide the country, along with the 
estimated total population for each area. 

 
Figure 3: Population estimates and digitized visible ground features 

Notes: Panel (a) shows the gridded population estimates at ∼100×100 meters, while panel (b) depicts the digitized 
visible ground features from OSM. Basemap: ESRI Satellite Imagery. 
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3.1.3 Settlement Boundary and Classes 

Determining the precise location and boundaries of each settlement is crucial for creating pre-EAs and 
guiding field operations. Accurate settlement boundaries help define settled areas and prevent the mixing of 
pre-EAs among large, populated areas. To achieve this, settlement boundaries were created, and settlements 
were classified into urban and rural categories. First, using the Global Human Settlement Layers (GHSL) 
product, settlements across the country were identified and converted into a vector layer to define the 
settlement boundaries. Subsequently, the settlements were classified into urban and rural categories with the 
assistance of GHSL classification. The GHSL provides a variety of settlement-related data in different spatial 
and temporal resolutions, along with multiple informative classes. The following two datasets from GHSL 
were used for settlement delineation and urban and rural classification. 

GHS-BUILT-S R2023A: The spatial raster dataset, GHS-BUILT-S, illustrates the distribution of built-up 
(BU) surface estimates in five-year intervals from 1975 to 2030, along with two functional use components: 
the total BU surface and the non-residential (NRES) BU surface (Schiavina et al., 2023). Panel (a) of Figure 
4 displays this data, which is generated by spatially and temporally interpolating five observed sets of multi-
sensor and multi-platform satellite images, including those from Landsat and Sentinel 2. 

GHS-SMOD R2023A: Settlements have been globally delineated and classified using the GHS Settlement 
Model layers (GHS-SMOD), which apply a logic based on cell cluster population size, population density, 
and built-up area densities, as recommended by the United Nations Statistical Commission and defined in 
Stage I of the Degree of Urbanization (EUROSTAT, 2021). The built-up surface, land layer, and a 1 km² 
population spatial raster dataset serve as inputs for the GHSL SMOD. As shown in panel (b) of Figure 4, 
the GHS SMOD classifies the 1 km² grid cells into three spatial entities at the first hierarchical level: “urban 
centre,” “urban cluster,” and “rural grid cells” (Schiavina et al., 2023). 

 
Figure 4: Global human settlement layer 

Notes: Panel (a) presents the built-up area, and panel (b) shows the SMOD classes. Basemap: ESRI Satellite Imagery. 
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3.1.4 Administrative Boundary 

It is essential to nest the produced enumeration area (EA) boundaries within administrative borders. The 
generated EA boundaries should be contained within these administrative boundaries. The necessary 
administrative border data for Armenia, based on the 2011 census, was sourced from the HDX website 
(HDX 2025). 

3.2 Semi-automatic Creation of pre-EAs 

This section outlines the semi-automated process used to generate the first digital national sampling frame 
in Armenia. While the national sampling frame is primarily created through automation, some manual 
adjustments may be necessary to enhance the outputs due to issues with inadequate or poor-quality input 
datasets. The process is divided into three main parts, which are detailed in the following sections. 

3.2.1 Urban and Rural Classification 

People living in and around cities are referred to as the urban population, typically characterized by a high 
population density. In contrast, the rural population is spread over large areas of land, predominantly found 
in developing regions. The overall population and geographic area are key factors in determining the size of 
enumeration areas (EAs). Achieving a balance between population and area constraints is essential to create 
EAs of manageable size. Due to the significant differences in population density and distribution between 
urban and rural administrative units, distinct criteria should be applied when forming EAs. Therefore, it is 
crucial to define urban and rural boundaries before creating pre-EAs, especially if the data is not readily 
available. 

Armenia does not have well-defined boundaries to separate urban and rural areas. The following approaches 
have been used to establish the border between Armenia’s urban and rural classes as a first step in developing 
the national sampling frame: 

1. Take the GHS-SMOD dataset and extract all urban classes; combine them into a single class. 

2. Convert the raster dataset from the combined classes to polygon vector format. These polygons 
represent the urban area. 

3. Extract the built-up area with values greater than 0 from the GHS-BUILT-S data. 

4. Create polygons from the raster built-up area. The country’s settlement boundaries and extent are 
represented in this output. 

5. Apply a 50-meter buffer to output 4 to account for recent urban growth and prevent cutting 
structures at the edge of the settlements. 

6. Intersect output 5 with the administrative boundary in Armenia. 

7. Make the necessary manual and automatic adjustments when necessary. For example, an 
administrative boundary should be regarded as urban if more than 90% of areas are urban (e.g., 
Yerevan). 

8. Any polygon in output 7 that crosses the output 2 boundary is an urban area. The rural class 
encompasses the remaining portion of the administrative boundaries. 
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3.2.2 Application of the preEA tool 

The “preEA” is a powerful and flexible tool developed by WorldPop in close collaboration with GeoData, 
with input from various governments, UN agencies, and global experts (Qader et al., 2021, 2023). As its 
development is ongoing, the tool is not yet publicly available. It is designed as a user-friendly QGIS plugin, 
built using the Python programming language. The implementation of the preEA tool is fully automated; 
however, certain preparatory processing steps are required before using the tool. These steps will be 
explained in the following sections. 

Input Data Preparation: The data preparation consists of three steps. First, the input boundary datasets 
are reprojected into the projected UTM WGS 1984 coordinate system. The preEA tool is compatible with 
such projection to ensure that the output units are in familiar area units such as meters or feet. Second, the 
digitized boundary (roads, waterways, and railways) is masked by the extent of the administrative boundary. 
Third, to prevent the creation of sliver polygons in the outputs, double lines (such as motorways) are merged 
in the road datasets. It was accomplished by utilizing a 25-meter distance on Merge Divided Road in ArcGIS 
Pro. A single line will be created from any roads that fall within 25 meters of each other and have the same 
road code or class (Figure 5). The entire process was automated using ArcGIS ModelBuilder.  

 
Figure 5: Preparation of road dataset 

Notes: Panel (a) shows the original road data, while panel (b) presents the road data after applying the Merge divided 
road technique. Basemap: ESRI Satellite Imagery. 

Create Uncrossable Features: Enumerators should avoid crossing major obstacles during data collection 
to enhance efficiency and reduce costs. To achieve this, certain features were designated as uncrossable:  

(1) Uncrossable lines: In the OSM line features, the class of the digitized features is recorded in the “fclass” 
column. After a thorough visual assessment, road classes such as primary, secondary, trunk, and tertiary, as 
well as waterway classes like rivers, were extracted, combined, and designated as uncrossable lines.  
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(2) Uncrossable settlement boundary: It is preferable to keep enumeration areas (EAs) from different cities, towns, 
or villages separate to prevent the mixing of household and administrative hierarchies. To achieve this, three 
procedures were employed to establish uncrossable settlement boundaries. First, the Zonal Statistical 
technique was used to summarize the total population within each settlement polygon created in section 
3.2.1. Second, a visual inspection approach was applied to identify the minimum population threshold for 
defining the uncrossable settlement boundaries. As a result, all settlement boundaries with a population 
exceeding 200 were designated as uncrossable. Third, the polygons containing more than 200 people were 
converted into lines and merged with additional uncrossable lines to generate the final set of uncrossable 
features. 

Implementing the preEA Tool: In the first part of the process, the preEA tool divides the region into 
small geographic units by polygonising all the input feature datasets. The user must define hard constraints, 
including the maximum and minimum population size and geographic area. In addition to these hard 
constraints, it is essential to input administrative boundaries and uncrossable features that the pre-EA 
boundaries must adhere to. The user should also define soft constraints, such as the minimum length of 
shared boundaries and various weighting coefficients, to ensure that the generated pre-EAs meet both user 
expectations and global standards (Table 4). 

Table 4: Parameter calibration in the preEA tool 

Class Maximum 
population Maximum area 

Minimum 
length shared 
boundaries 

Area 
(coefficient) 

Population 
(coefficient) 

Share factor 
(coefficient) 

Urban 1000 10km2 20% 0 1 2 
Rural 800 10km2 20% 0 1 2 

Once all the parameters are established, the small geographic units are merged until one of the hard 
constraints is satisfied. The output is in vector format, and each generated pre-EA includes necessary 
attribute information, such as the administrative boundary, total estimated population, area, and unique IDs 
(Random IDs and ID numbers generated using the serpentine technique). Table 4 presents the parameter 
calibration used in the preEA tool. The user can adjust priority parameters during the merging process. For 
example, when the population weight is increased, the total population of the created pre-EAs will be more 
homogeneous and closer to the maximum population threshold. Conversely, increasing the shape factor 
coefficient will result in more compact shapes. 

Post-Processing: The quality of the input datasets primarily determines the quality of the outputs generated 
by the preEA tool. Due to limitations in the input datasets and the imposition of various constraints within 
the tool, some of the generated pre-EA outputs require assessment and modification. This is the main reason 
the outputs are referred to as “pre-EAs” rather than final EAs. For example, pre-EAs with negligible 
populations or geographic areas were automatically merged with neighbouring units using the “Eliminate 
Small Area” tool in the preEA package. Manual modifications were applied to pre-EAs covering large 
geographic areas with high populations. 

3.3 Further Manual Adjustments 

The national sampling frame created using the automatic approach requires additional modifications for 
several reasons. First, adjustments are necessary in areas where the existing datasets were insufficient to create 
smaller EAs. Second, the output contains some polygons with positive populations but no actual settlements, 
which is a limitation of the gridded population and settlement data, not the preEA tool. PreEAs with positive 
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populations that fall within non-residential areas, such as offices, buildings under construction, recreational 
centres, factories, manufacturing zones, and agricultural lands, are manually adjusted. 

3.4 Field support and guidance 

This work also developed detailed automatic field maps and offline maps to support ground data collection 
and provide guidance. Several informative geospatial layers and techniques were employed in the process. 
For further details, please refer to Appendix B. 

4 Results 

4.1 Urban and Rural Classification 

This paper presents Armenia’s first accessible and usable digitized urban and rural boundaries (Figure 6). 
Based on the generated boundaries and the 2020 WorldPop gridded population data, urban areas constitute 
20% of the land area, while rural areas cover the remaining 80%. In terms of population, over 60% of 
Armenians reside in urban areas, with less than 40% living in rural areas. 

 
Figure 6: Generated urban and rural areas in Armenia. Basemap: OSM 
Standard. 
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4.2 A comparative analysis of urban and rural population: 2011 census vs. WorldPop 
gridded data 

Grid-level population estimates are derived from WorldPop data, which can be aggregated to align with any 
specified geographic boundaries. In contrast, the 2011 Census data from the Committee of the Republic of 
Armenia (ArmStat) provides population counts, though with limited spatial detail, focusing primarily on marz 
and settlement types. Despite the restricted spatial information in the census data, the population estimates 
from WorldPop have been compared to the actual population count at the aggregate level to assess the 
accuracy of these estimates and the generated urban and rural classification. The population distribution at 
both the marz and urban/rural levels is highly comparable. The correlation coefficient between populations 
from the two data sources is 0.99 (SE: 0.05, p-value: 0.00) for marz-level populations and 1.0 for urban/rural 
populations. Figure 7 compares the “urban” population at the marz level, while Figure 8 compares the “total” 
population at the urban/rural level. These comparisons suggest that the population estimates from 
WorldPop are consistent with actual population data, at least at the marz and urban/rural levels. More 
importantly, it indicates that the automatic creation of urban and rural boundaries has produced an accurate 
classification. 

 
Figure 7: Urban population in marzes, 2011 

 

 
Figure 8: Urban and rural population, 2011 



 
17 

4.3 Armenia’s National Sampling Frame 

Figure 9 illustrates the pre-Enumeration Areas (pre-EAs) generated in this study using the method outlined 
in Section 3. The map demonstrates that the pre-EAs cover the entire territory of Armenia, with boundaries 
drawn accurately, free from geometric errors. In the initial stage of automatic pre-EA production, the pre-
EA tool generated 130,378 building blocks (Figure 9a). Following the merging process, 7,413 pre-EAs were 
delineated across Armenia, with 3,813 in urban areas and 3,600 in rural areas (Figure 9b). After manual 
adjustments, approximately 60% of the pre-EAs (4,354) have a population greater than zero, most of which 
fall within the estimated range of 100 to 1,000 people. The remaining 3,059 pre-EAs are classified as 
unsettled, meaning their population is zero, as explained in Section 3. 

While the map encompasses the entire country, about 41% of the area depicted would not be considered in 
the sampling designs, as the probability of selection for empty Primary Sampling Units (PSUs) is zero. 
Nonetheless, all individuals are accounted for in the population estimates. 

 

Figure 9: PreEA tool outputs 
Notes: Panel (a) depicts building blocks before merging, while panel (b) shows pre-EA outputs after merging. Basemap: 
OSM Standard. 

Next, the Primary Sampling Unit (PSU) size is characterized to assess the sampling frame and analyze the 
population distribution across pre-EAs, with particular emphasis on those pre-EAs with a positive 
population. Figure 10 displays the distribution of the 2022 population estimate across the pre-EAs in 
Armenia, which has been estimated based on two datasets. The 2020 population data is first sourced from 
WorldPop, which was projected based on the 2011 Census (Bondarenko et al., 2020). This population at the 



 
18 

pre-EA level has then been re-scaled to match the 2020 population data from the ArmStat at the strata level 
that we described in Section 2. Then the preEA-level rescaled 2020 population data has been further 
projected to 2022 using strata-level population growth calculated from the ArmStat’s population data over 
time. 

 

Figure 10: Distribution of population across pre-EAs in Armenia 
Notes: The figure presents the distribution of population across pre-census enumeration areas (pre-EAs) in 2022. The 
extreme values of the population have been winsorized at the 1st and 99th percentiles to account for the potential 
outliers, i.e., we set the low (high) values at the 1st percentile (99th percentile). 

The population distribution across the pre-EAs is fairly normal: 90% of the PSUs have a population below 
1,156, while the remaining 10% have populations ranging from 1,156 to 2,274. These values were winsorized2 
at the 1st and 99th percentiles to minimize the impact of potential outliers. The population of the pre-EA is 
not winsorized in the sample frame, and it is our suggestion to adjust those extreme values as the population 
might have been overestimated in those areas. Users of this sampling frame can make their own judgments 
regarding these values. Despite the presence of some outliers at the upper end of the distribution, the 
population across pre-EAs is generally more evenly distributed than the adult population across electoral 
precincts, which displays U-shaped patterns, as shown in Figure 1. 

 

2 In statistics, winsorizing replaces extreme values (outliers) in a dataset with less extreme values, typically the values at the specified 
percentiles, to reduce the impact of those outliers in statistical analysis. 
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Figure 11 presents examples of pre-EAs with positive populations located within non-residential areas. As 
these pre-EAs do not contain residents, their population estimates are adjusted by setting them to zero. Prior 
to this adjustment, 1,601 pre-EAs already had a population of zero, and the population of 1,458 additional 
pre-EAs was revised to zero. This results in a total of 3,059 pre-EAs being classified as unsettled areas. 
Following the adjustment, the population estimates for the remaining pre-EAs with positive populations 
were further refined by applying a strata-level factor to align them with the strata-level population counts. 

 
Figure 11: Examples of pre-EAs located in non-residential areas yet have a population greater than zero. 

Basemap: ESRI Satellite Imagery. 

Certain international guidelines must be adhered to when developing pre-EA boundaries, as illustrated in 
Figure 12. Within the designated administrative boundaries, the pre-EA boundaries must be nested (Figure 
12a). Features such as rivers and major roads, which are considered uncrossable, must be respected when 
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defining pre-EA outlines (Figure 12b). Additionally, the pre-EA boundaries should align with visible ground 
features, such as roads and infrastructure. Figure 12c provides examples of pre-EA boundaries in urban 
areas, while Figure 12d shows the pre-EA boundaries in rural areas. These figures demonstrate the extent to 
which the pre-EA outlines align with discernible ground features, highlighting their accuracy in reflecting the 
physical landscape. 

 
Figure 12: The outline of pre-EA boundaries. Basemap: OSM Standard and ESRI Satellite Imagery. 

4.4 The First Application: Listening to Armenia 

This section presents an application of the proposed national sampling frame based on pre-EAs in Armenia, 
specifically describing the sampling design of the World Bank Group’s “Listening to Armenia” survey 
(L2Arm). The application of the proposed sampling frame in the L2Arm survey has proven to be a successful 
approach. It allowed for a nationally representative sample that met the objectives of capturing urban and 
rural distinctions across all regions of Armenia. The innovative use of pre-EAs optimizes resource allocation 
and ensures the feasibility of the survey within time and budget constraints. 
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4.4.1 Overview of the Survey 

Listening to South Caucasus (L2SC) is an ongoing project and an expansion of a collaborative effort that has 
been conducted in multiple countries in the Europe and Central Asian region.3 This initiative aims to 
comprehensively monitor the views and well-being of a representative group of people as the government 
introduces social and economic reforms that affect every business and citizen. By reflecting on the experience 
of this group over the years, the study provides an up-to-date understanding of how policies reflect on 
people’s daily lives. The study comprises a nationally representative baseline survey and a high-frequency 
panel survey of a subset of the baseline participant households. The information collected through the L2SC 
initiative informs reform efforts directly by raising the profile of citizens’ views and enabling in-depth 
economic analysis. While the L2SC survey covers Armenia and Georgia, this paper focuses on the baseline 
survey in Armenia—Listening to Armenia (L2Arm)—where the new national sampling frame based on pre-
EAs has been proposed. 

4.4.2 Sampling Design 

The sampling design optimizes the spatial allocation of the household sample to provide valid 
representativeness at the national level for both urban and rural areas. A two-stage stratified cluster sampling 
design is employed to select participating households, ensuring a balanced sample distribution across regions 
and accounting for differences between urban and rural areas, survey budgets, and discrepancies in 
population estimates. The L2Arm survey’s implementation highlighted the robustness of the sampling frame, 
as it successfully captured the population distribution across diverse geographic and demographic strata. The 
use of probability proportional to size (PPS) sampling ensured that the selection process was equitable and 
aligned with population estimates, further validating the practicality of the proposed approach. 

In the first stage, a certain number of primary sampling units (PSUs) will be selected in each urban and rural 
stratum (urban and rural areas within each administrative region). In the second stage, the ultimate sampling 
units or the secondary sampling units (SSUs)—households in the case of L2SC—are randomly selected 
within each PSU. The survey is then implemented among the selected households. Given that our focus in 
this paper is on the first stage of the two-stage procedure, the sampling frame used for the survey in the first 
stage is highlighted. 

Sampling Frame: As mentioned, the sampling frame is based on pre-census enumeration areas (pre-EAs) 
providing the most accurate information on the geographic distribution of the population across Armenia. 
This allows for the most precise formulation of a sample design. 

Sample Size: The objective of any sample design is to achieve the highest precision in indicators of interest 
given survey parameters. The sampling design aims to efficiently allocate the given PSUs across strata and 
the households across PSUs. For L2Arm, 400 PSUs are allocated across strata proportional to the population 
(i.e., implicit allocation) with some adjustments. Ten households are targeted within each PSU. Table 5 
presents the proposed baseline sample allocation. 

 

3 The in-progress L2SC survey is not publicly available yet. However, the survey is available for other Europe and Central Asian 
(ECA) countries, including Uzbekistan, Kazakhstan, the Kyrgyz Republic, Tajikistan, and Ukraine. 
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In the first stage of the two-stage stratified cluster sampling design, PSUs in each stratum are randomly 
selected using systematic random sampling with probability proportional to size (PPS), size being the 
estimated population of the pre-EA. This method assigns each PSU’s likelihood of selection based on the 
PSU’s size within the stratum. Population size, rather than the number of households, is used due to a lack 
of data on the number of households at the PSU level in the sampling frame. Thus, each PSU’s likelihood 
of selection corresponds to the percentage of the stratum population residing in the PSU. In the second 
stage, a set number of households are randomly selected from each chosen PSU. 

Table 5: Baseline sample design based on proportional sample allocation 

Stratum 

 Baseline 

2022 Population 
Estimate 

Allocated  
Number of PSUs 

Target Number 
of HHs 

(PSU size) 
Number of HHs 

Yerevan 1,098,866 147 10 1470 
Aragatsotn - Urban 26,738 4 10 40 
Aragatsotn - Rural 98,949 13 10 130 
Ararat - Urban 72,294 10 10 100 
Ararat - Rural 186,983 25 10 250 
Armavir - Urban 82,953 11 10 110 
Armavir - Rural 183,703 25 10 250 
Gegharkunik - Urban 65,902 9 10 90 
Gegharkunik - Rural 162,809 22 10 220 
Kotayk - Urban 137,493 18 10 180 
Kotayk - Rural 116,364 16 10 160 
Lori - Urban 124,050 17 10 170 
Lori - Rural 87,532 12 10 120 
Shirak - Urban 133,620 18 10 180 
Shirak - Rural 96,856 13 10 130 
Syunik - Urban 90,205 12 10 120 
Syunik - Rural 44,350 6 10 60 
Tavush - Urban 49,859 7 10 70 
Tavush - Rural 69,943 9 10 90 
Vayots Dzor - Urban 16,160 2 10 20 
Vayots Dzor - Rural 31,501 4 10 40 
Armenia 2,977,130 400   4000 

Notes: The population estimates aggregated at the stratum level are by the end of 2022 and match the population 
statistics from the Statistical Committee of the Republic of Armenia. 

5 Discussions 

The national sampling frame based on pre-EAs offers several advantages that are not provided by existing 
and accessible potential sampling frames. However, it may also present practical challenges and 
methodological limitations. This section discusses the additional benefits and potential concerns associated 
with this approach and proposes solutions. These solutions have been successfully tested in other developing 
countries where pre-EAs have been implemented, such as Somalia (Qader et al., 2021) and the Democratic 
Republic of the Congo (Qader et al., 2023). 

Population Estimates as a Measure of EA Size: The primary challenge of using the proposed national 
sampling frame for household surveys is that the size of the pre-EA is based on population estimates derived 
from gridded population data. These estimates may differ from the actual population, potentially introducing 
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bias in the probability of preEAs being selected during the first stage of the two-stage design. Although this 
study does not address the validation of the gridded population estimates, it is important to clarify the 
limitations of the data. The automatic creation of a national sampling frame requires granular population 
information to ensure that the resulting sampling units are manageable. However, this level of granularity is 
not available in the existing census data in Armenia. As a result, gridded population data is utilized. In 
developing countries, several gridded population datasets with varying spatial resolutions are accessible, 
including Gridded Population of the World (GPWv4) (CIESIN, 2016), WorldPop (Bondarenko et al., 2020), 
High-Resolution Settlement Layer (HRSL) (Facebook and CIESIN, 2016), Demobase Population datasets 
(Azar et al., 2013), Global Human Settlement Population Grid (GHS-POP) (JRC, 2015), Global Rural-Urban 
Mapping Project (GRUMP) (CIESIN, 2011), and LandScan (Dobson et al., 2000). The accuracy and quality 
of gridded population data are primarily influenced by the quality of the input data model, which includes 
census data, satellite-derived covariates, and the statistical model used. For this study, the WorldPop-
constrained gridded population data for Armenia from 2020 was used to create the national sampling frame, 
as it was the most recent available with reasonable spatial resolution. This implies that there may be notable 
differences between the population size and distribution in 2020 and the present day. However, since users 
can update the national sampling frame’s population based on their desired data sources, such as a population 
registry, this discrepancy should not be a major concern. 

Our findings indicate that the total populations of pre-EAs vary, ranging from zero to a specific population 
size. In the pre-EA tool, users can define various constraints, with the maximum population size and 
geographic area being the two primary hard constraints. These maximum thresholds may vary depending on 
the objectives of the work or the specific country context. The main purpose of establishing maximum 
thresholds for both population and area is to balance these limits and prevent the creation of unmanageable 
preEAs in areas with sparse populations. Once one of these constraints is met, aggregation ceases during the 
merging process. In uninhabited areas (as indicated by gridded population data), the size of preEAs is 
determined solely by the maximum geographic area; if this threshold is reached, aggregation stops. 
Consequently, several pre-EAs with zero or low population values may be created. This issue can be 
addressed in the tool by removing the geographic area constraint, but doing so may result in the creation of 
excessively large pre-EAs that could be difficult to enumerate, particularly in rural areas. The primary benefit 
of considering geographic constraints is that it helps avoid including uninhabited areas in sampling surveys, 
leading to significant time and cost savings. However, as the method primarily relies on gridded population 
data, there is a risk that some inhabited areas may be overlooked if the data is inaccurate or unreliable. The 
severity of bias due to using population estimates as PSU size depends on the size of the discrepancy between 
the actual population and population estimates and whether the difference is systematic.  

This paper presents the first accessible and usable urban and rural classification for Armenia, contributing to 
the development of a national sampling frame. Currently, there is no available digital urban and rural 
boundary that can be compared with the boundaries generated in this study. However, we compared urban 
and rural population estimates between the boundaries we generated and those from the 2011 census. While 
there is a strong correlation between the aggregated population estimates from the census and the gridded 
population estimates for urban and rural areas, as discussed in Section 5, the output may not fully reflect 
reality. This is primarily due to the GHSL SMOD's approach, which classifies the world into urban and rural 
categories using gridded population data and built-up areas derived from various data sources. The 
algorithms employed to generate the input data for both datasets, along with the satellite imagery used to 
extract the covariates, can introduce certain biases, affecting the accuracy of the classification. Furthermore, 
National Statistical Offices (NSOs) often use non-standardized approaches to classify urban and rural areas 
within their countries. 
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Another challenge associated with the inaccuracy of gridded population data is the occasional allocation of 
people in non-residential areas. This issue arises when the data fails to properly distinguish between 
residential and non-residential spaces, leading to an incorrect assignment of the population in preEAs that 
do not contain residents (Archila et al. 2020; Kuffer et al. 2022). Model estimates of gridded population data 
can be improved with a reliable approach, along with sufficient resources and data, to accurately identify 
non-residential buildings. However, this remains a significant challenge due to the complexity of the issues 
involved, such as the similarity of structures and the coexistence of residential and commercial tenants within 
the same building (Hu et al. 2015; Han et al. 2017; Chew et al. 2018). As a result, non-residential areas are 
not always excluded in the population predictions of various gridded population datasets. Consequently, 
some pre-EAs located within non-residential areas may still show positive population values. 

It is important to note that when the pre-EAs were verified against high-resolution satellite imagery base 
maps from ESRI and Google, many of these validations were based on visual observation. Since the dates 
of the satellite imagery were not considered, these evaluations may not have been entirely objective. 
Therefore, without comprehensive validation on the ground, these assumptions cannot be fully verified. 

Digitized Elements and Boundaries: Digitalized elements, both natural and man-made, are crucial for the 
automatic generation of the national sampling frame. In this study, the method leveraged the extensive digital 
line data from OpenStreetMap (OSM), which includes roads, railways, and waterways. However, the pre-
EAs generated often exceeded the specified thresholds, such as population and geographic area, due to the 
poor quality and incomplete spatial coverage of the existing digitized boundaries. The main causes of this 
issue are (i) incomplete and (ii) disconnected lines. If certain natural and artificial features remain undigitized, 
further work—either manually or automatically—needs to be carried out. Lines should never be left open 
and should always be connected to other features whenever possible. This is because disconnected lines will 
not be polygonised during the polygonization process, which leads to the creation of larger, unmanageable 
preEAs. In addition to spatial coverage, the quality of OSM attribute data is essential for the automatic 
creation of the national sampling frame. Several line features, including major roads, rivers, and other barriers, 
were classified as uncrossable to improve the collection of ground data and enhance efficiency. The only 
source that can accurately determine the types of features on the ground is the attribute information. If the 
feature classification in the attribute table is incorrect, it may result in misclassification of uncrossable 
features, thereby impacting the accuracy of the national sampling frame. The quality, spatial coverage, and 
attribute information of OSM data may vary from one country to another (Haklay, 2010; Barrington-Leigh 
and Millard-Ball, 2017; Minaei, 2020; Gatea and Al-Bakri, 2023). 

The semi-automatic approach creates pre-EAs based on digitized visible ground features, which are generally 
unlikely to intersect with buildings or other structures. However, there are instances where such intersections 
may occur. These intersections may be caused by administrative boundaries or poorly entered visible digital 
lines. Since administrative boundaries cannot be altered without consulting the relevant government agencies, 
users should be cautious when determining the reasons for the cutting of buildings and other structures. For 
example, Figure 13 illustrates a pre-EA output where the boundary cuts through buildings. This is due to the 
administrative boundary of the municipality, and as such, it cannot be modified. 
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Figure 13: An example of pre-EA boundary-cutting buildings 

This method has solely utilized publicly accessible natural and man-made features, and settlement 
boundaries, such as OSM and GHSL, for reproducibility and worldwide application. Nonetheless, several 
government agencies can provide input datasets such as roads and waterways with higher quality and greater 
geographic coverage. In addition, future studies could also investigate leveraging the more modern and 
comprehensive commercial road network (Strano et al., 2017). If inadequate spatial coverage is a major 
concern, an alternative approach would be to use “mapathons”—a coordinated mapping event—to enhance 
the current open-source data on roads and rivers before implementing this method. 

One of the primary challenges in collecting high-quality surveys in Armenia was the absence of clearly defined 
boundaries for PSUs. To our knowledge, it remains uncertain whether the Statistical Committee of the 
Republic of Armenia (ArmStat) possesses a digital map of census enumeration areas. As a result, this paper 
presents the first accessible digitized national sampling frame for the country. The inclusion of PSU 
boundaries and other administrative units in our sampling frame provides several advantages. Notably, it 
helps prevent errors such as the inclusion of households outside the designated survey areas. If such errors 
occur non-randomly, they could significantly compromise the integrity of subsequent analyses based on the 
collected data. Furthermore, this type of error may be systematic, particularly for PSUs with larger areas and 
longer boundaries, where such mistakes are more likely to occur. Therefore, this feature plays a crucial role 
in ensuring robust quality control throughout the data collection process. 

It is difficult to directly compare the resources and budget of our automated method with manual approaches, 
as many countries do not offer a detailed breakdown of the costs associated with various stages of census 
operations, especially the resources needed for manually digitizing national census enumeration areas. For 
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example, the 2010 census mapping effort in Zambia was projected to cost approximately US $7 million and 
take nearly two years to complete (United Nations Secretariat, 2007). If the pre-census sampling frame in 
Armenia had been manually digitized, significant financial resources would have been required to extensively 
train a team of cartographers on how to digitize all the units using high-resolution satellite imagery. 
Additionally, the entire pre-enumeration area would need to be manually digitized in accordance with strict 
requirements, necessitating considerable effort to ensure quality control and correct geometric errors, given 
the hand-drawn nature of the process. This approach would have been both time- and resource-intensive. 
In contrast, the automated creation of Armenia’s pre-census sampling frame was completed in under three 
months, including the manual corrections needed due to the lack of spatial input data and feedback was 
received by the local experts, all carried out by a single specialist. The significant savings in labour, time, and 
costs from using an automated method can be reinvested into other aspects of national surveys and census 
preparation, enhancing overall efficiency. 

Despite its limitations, the method was successfully implemented, resulting in the creation of a national 
sampling frame for Armenia. From financial, time, and technological perspectives, this approach 
outperformed conventional manual techniques. Historically, manually delineating a nationwide sampling 
frame required years of work and substantial financial resources. Moreover, the manual method is susceptible 
to various geometric issues, such as gaps, overlaps, pockets, and disjunctions, due to the inherent limitations 
of human error. These geometric inconsistencies could introduce bias into the sampling frame and, 
consequently, the data collected. In contrast, the automatic method eliminates these geometric problems, 
ensuring greater accuracy. Furthermore, the automatic approach offers several advantages over the gridded 
population sampling frame, which has been directly used as a sampling frame in various studies (Thomson 
et al., 2017; Cajka et al., 2018; Qader et al., 2020). The key difference between our approach and the gridded 
population frame lies in the design of the sampling units. In gridded population methods, buildings and other 
structures are often truncated because the grid’s boundaries do not align with visible features on the ground. 
In contrast, the preEA tool generates pre-enumeration area boundaries that follow observable, natural 
features such as rivers and roads, providing a more accurate and relevant sampling frame. 

Potential Applications of the Method in Different Countries: The absence of a national sampling frame 
presents significant challenges during the implementation stage of many household surveys. In some 
countries, an up-to-date and digitized national sampling frame may not be available. While such a frame may 
exist in other countries, National Statistical Offices (NSOs) may be unwilling to grant access to international 
agencies such as the World Bank. In some cases, the sampling frame relies on census enumeration areas, 
which, due to their large spatial units, can lead to substantial costs when conducting the second and third 
stages of sampling to achieve the required household size. Additionally, if the sample selection is based on 
census enumeration areas, the household listing for the selected sampling units requires considerable time 
and resources due to their extensive spatial coverage and large population totals. Our proposed method and 
strategy offer a potential solution for creating a new national sampling frame in the event of these challenges 
arising in future surveys in other countries. 

6 Conclusion 

This paper introduces a new national sampling frame for the Republic of Armenia, serving as a model for 
developing nations with limited access to functional sampling frames for representative household surveys 
and potentially future censuses. Specifically, it presents an innovative method for the automatic delineation 
of pre-census enumeration areas (pre-EAs), which offers several advantages over traditional sources of 
sampling frames such as those based on outdated census enumeration areas, census settlements, electoral 
precincts, and traditional gridded sampling techniques. 
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The national sampling frame developed in this paper divides Armenia into approximately 7,500 pre-EAs, the 
majority of which have population estimates greater than zero. These estimates, which are recent and 
relatively homogeneous, range mostly between 100 and 1,000 people. The digitized enumeration areas with 
clearly defined boundaries facilitate the household selection process by ensuring that households outside of 
the selected PSUs are not included. 

This paper makes several methodological and practical contributions to the survey sampling literature and 
to organizations that collect and utilize representative surveys, such as researchers and policymakers. First, it 
expands the application of the semi-automatic approach for creating national sampling frames by generating 
Armenia’s first digitized frame based on pre-EAs, offering an alternative to traditional methods of delineating 
national sampling frames. Our analysis highlights the applicability of pre-EAs for other countries facing 
similar challenges in developing sampling frames. Second, the national sampling frame contributes to survey 
implementers and users of household surveys in Armenia by providing a standardized and decentralized 
framework. Third, the paper systematically evaluates the existing sampling frames in Armenia, comparing 
their strengths and limitations to the proposed frame. This comparison suggests that our frame complements 
existing sampling frames and can serve as a viable alternative. 

In conclusion, the paper acknowledges some limitations and outlines directions for future research. While 
the proposed national sampling frame addresses a common challenge in the first stage of two-stage sampling 
designs, solutions for challenges encountered in the second stage, such as household listing strategies, are 
beyond the scope of this paper. Future research could explore innovative approaches to household listing, 
particularly when utilizing the sampling frame introduced here.
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Appendix A: Additional Figures 

 
Figure A.1: Change in population distribution in an area between 2011 and 2024 

 

Appendix B: Field and Offline Maps 

To take advantage of the boundaries and other spatial information, the survey conductor can create field 
maps of selected pre-EAs for enumerators to feed their navigation when they collect the survey. Even in the 
presence of the field maps, it could be still challenging for enumerators to navigate themselves in the selected 
pre-EA especially, when the enumerators are not familiar with the area and cannot eyeball the boundaries 
from the information provided in the physical maps, like street address and some information about church 
and schools. A potential solution to this problem could be offline maps, which inform the enumerators of 
their location live and signal if they overstep outside the selected pre-EAs. In many developing countries like 
Armenia, access to the internet is a substantial challenge, especially in rural and remote areas, so enumerators 
can benefit from the offline maps that operate well with the minimum requirement of only access to satellite. 
So, enumerators should be able to navigate smoothly and avoid the risk of going beyond the boundaries of 
selected PSUs unless they are, for example, under the tunnel or in between narrow alleys in the mountain. 
In total, 400 field paper maps and 400 georeferenced offline maps were created using QGIS software. 

Multiple settled areas are probably present in various pre-EAs. Map definitions of these settled areas may be 
helpful for ground navigation. Several actions have been taken to display the settled region on the field maps. 
Administrative boundaries with incorporated urban and rural areas were intersected with settlement 
boundaries. Zonal Statistic Polygons in QGIS were then used to determine the population sum for the 
resultant intersected polygons based on the gridded population data. A point layer was created from the 
output. Additionally, the settlement locations’ maximum population values inside each pre-EA were 
extracted. The settlement with the highest population numbers is shown by the black circle surrounding 
settlement sites on the field map. This can help the enumerator to find the most densely populated area as a 
starting point. The X and Y coordinates were calculated for all the settlement points and were shown on the 
field map (Figures B.1 and B.2). 
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Figure B.1: An example of a detailed field paper map in rural areas 

 
Figure B.2: An example of a detailed field paper map in urban areas 
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Appendix C: Survey Weights 

Sampling weights account for the fact that different members of the population have different probabilities 
of being selected for interviews, represent various numbers of people in the overall population, and are 
necessary when computing the representative statistics at the level of the domain. If required, sampling 
weights are also adjusted to account for non-responsive rates given the survey design. 

The dataset will have two sets of weights, including household and individual weights. The household weights 
are the inverse probability of selection of households and are calculated from the following two components 
in our two-stage sampling design. The first component is the sampling weight (inverse probability of 
selection) of PSU within the stratum, and the second component is the sampling weight of selection of 
households within the PSU. For calculating individual weights, the third component, sampling weights of 
individuals within the household, is added to compute the household weights. Each of the components is 
calculated as follows: 

Component 1: The inverse probability of selection of PSU within the stratum by using PPS (Probability 
Proportional to Size) is calculated as: 

𝑊!"# =
1
𝑃!"#

=
𝑁"$%&$#'

𝑛!"# × 𝑁!"#
, 

where 𝑊!"# is the sampling weight of PSU within the stratum, 𝑃!"# is the probability of selection of PSU 
within the stratum, 𝑛!"# is the number of selected PSUs within the stratum, 𝑁!"# is the size of selected PSU, 
and 𝑁"$%&$#' is the population of the stratum. The size measure can be the population, the number of 
households, the number of electors, or the school attendance, while the number of households would be the 
preferred option in most household surveys. 

Component 2: The inverse probability of selection of household within PSU is calculated as: 

𝑊((!"# =
1

𝑃((!"#
=
𝑁((!"#
𝑛((!"#

, 

where 𝑊((!"# is the sampling weight of household within PSU, 𝑃((!"# is the probability of selection of 
household within PSU, 𝑛((!"# is the number of sampled (interviewed) households within PSU, and 𝑁((!"# 
is the total number of households within PSU. 

Component 3: The inverse probability of selection of individual within the household is calculated by: 

𝑊)*+$$ =
1

𝑃)*+$$
=
𝑁)*+$$
𝑛)*+$$

=
𝑁)*+$$
1 , 

where 𝑊)*+$$ is the sampling weight of individual within the household, 𝑃)*+$$ is the probability of selection 
of individual within the household, 𝑛)*+$$ is the number of sampled (interviewed) individuals within the 
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household, equal to 1, as only one individual was allowed to be interviewed from each household, and 𝑁)*+$$ 
is the size of the household surveyed (asked and recorded during the interview). 

Based on these components, household and individual weights are calculated as: 

𝑊(( = 𝑊!"# ×𝑊((!"# , 

𝑊)*+ = 𝑊(( ×𝑊)*+$$ . 

 

 

 

 


